Do you want to publish a course? Click here

Target-based Hyperspectral Demixing via Generalized Robust PCA

105   0   0.0 ( 0 )
 Added by Sirisha Rambhatla
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Localizing targets of interest in a given hyperspectral (HS) image has applications ranging from remote sensing to surveillance. This task of target detection leverages the fact that each material/object possesses its own characteristic spectral response, depending upon its composition. As $textit{signatures}$ of different materials are often correlated, matched filtering based approaches may not be appropriate in this case. In this work, we present a technique to localize targets of interest based on their spectral signatures. We also present the corresponding recovery guarantees, leveraging our recent theoretical results. To this end, we model a HS image as a superposition of a low-rank component and a dictionary sparse component, wherein the dictionary consists of the $textit{a priori}$ known characteristic spectral responses of the target we wish to localize. Finally, we analyze the performance of the proposed approach via experimental validation on real HS data for a classification task, and compare it with related techniques.

rate research

Read More

This paper introduces new attention-based convolutional neural networks for selecting bands from hyperspectral images. The proposed approach re-uses convolutional activations at different depths, identifying the most informative regions of the spectrum with the help of gating mechanisms. Our attention techniques are modular and easy to implement, and they can be seamlessly trained end-to-end using gradient descent. Our rigorous experiments showed that deep models equipped with the attention mechanism deliver high-quality classification, and repeatedly identify significant bands in the training data, permitting the creation of refined and extremely compact sets that retain the most meaningful features.
Reference-based Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image by introducing an additional high-resolution (HR) reference image. Existing Ref-SR methods mostly rely on implicit correspondence matching to borrow HR textures from reference images to compensate for the information loss in input images. However, performing local transfer is difficult because of two gaps between input and reference images: the transformation gap (e.g. scale and rotation) and the resolution gap (e.g. HR and LR). To tackle these challenges, we propose C2-Matching in this work, which produces explicit robust matching crossing transformation and resolution. 1) For the transformation gap, we propose a contrastive correspondence network, which learns transformation-robust correspondences using augmented views of the input image. 2) For the resolution gap, we adopt a teacher-student correlation distillation, which distills knowledge from the easier HR-HR matching to guide the more ambiguous LR-HR matching. 3) Finally, we design a dynamic aggregation module to address the potential misalignment issue. In addition, to faithfully evaluate the performance of Ref-SR under a realistic setting, we contribute the Webly-Referenced SR (WR-SR) dataset, mimicking the practical usage scenario. Extensive experiments demonstrate that our proposed C2-Matching significantly outperforms state of the arts by over 1dB on the standard CUFED5 benchmark. Notably, it also shows great generalizability on WR-SR dataset as well as robustness across large scale and rotation transformations.
Hyperspectral image (HSI) clustering is a challenging task due to the high complexity of HSI data. Subspace clustering has been proven to be powerful for exploiting the intrinsic relationship between data points. Despite the impressive performance in the HSI clustering, traditional subspace clustering methods often ignore the inherent structural information among data. In this paper, we revisit the subspace clustering with graph convolution and present a novel subspace clustering framework called Graph Convolutional Subspace Clustering (GCSC) for robust HSI clustering. Specifically, the framework recasts the self-expressiveness property of the data into the non-Euclidean domain, which results in a more robust graph embedding dictionary. We show that traditional subspace clustering models are the special forms of our framework with the Euclidean data. Basing on the framework, we further propose two novel subspace clustering models by using the Frobenius norm, namely Efficient GCSC (EGCSC) and Efficient Kernel GCSC (EKGCSC). Both models have a globally optimal closed-form solution, which makes them easier to implement, train, and apply in practice. Extensive experiments on three popular HSI datasets demonstrate that EGCSC and EKGCSC can achieve state-of-the-art clustering performance and dramatically outperforms many existing methods with significant margins.
In photon-limited imaging, the pixel intensities are affected by photon count noise. Many applications, such as 3-D reconstruction using correlation analysis in X-ray free electron laser (XFEL) single molecule imaging, require an accurate estimation of the covariance of the underlying 2-D clean images. Accurate estimation of the covariance from low-photon count images must take into account that pixel intensities are Poisson distributed, hence the classical sample covariance estimator is sub-optimal. Moreover, in single molecule imaging, including in-plane rotated copies of all images could further improve the accuracy of covariance estimation. In this paper we introduce an efficient and accurate algorithm for covariance matrix estimation of count noise 2-D images, including their uniform planar rotations and possibly reflections. Our procedure, steerable $e$PCA, combines in a novel way two recently introduced innovations. The first is a methodology for principal component analysis (PCA) for Poisson distributions, and more generally, exponential family distributions, called $e$PCA. The second is steerable PCA, a fast and accurate procedure for including all planar rotations for PCA. The resulting principal components are invariant to the rotation and reflection of the input images. We demonstrate the efficiency and accuracy of steerable $e$PCA in numerical experiments involving simulated XFEL datasets and rotated Yale B face data.
It is known that Boosting can be interpreted as a gradient descent technique to minimize an underlying loss function. Specifically, the underlying loss being minimized by the traditional AdaBoost is the exponential loss, which is proved to be very sensitive to random noise/outliers. Therefore, several Boosting algorithms, e.g., LogitBoost and SavageBoost, have been proposed to improve the robustness of AdaBoost by replacing the exponential loss with some designed robust loss functions. In this work, we present a new way to robustify AdaBoost, i.e., incorporating the robust learning idea of Self-paced Learning (SPL) into Boosting framework. Specifically, we design a new robust Boosting algorithm based on SPL regime, i.e., SPLBoost, which can be easily implemented by slightly modifying off-the-shelf Boosting packages. Extensive experiments and a theoretical characterization are also carried out to illustrate the merits of the proposed SPLBoost.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا