Do you want to publish a course? Click here

Band Selection from Hyperspectral Images Using Attention-based Convolutional Neural Networks

139   0   0.0 ( 0 )
 Added by Jakub Nalepa
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper introduces new attention-based convolutional neural networks for selecting bands from hyperspectral images. The proposed approach re-uses convolutional activations at different depths, identifying the most informative regions of the spectrum with the help of gating mechanisms. Our attention techniques are modular and easy to implement, and they can be seamlessly trained end-to-end using gradient descent. Our rigorous experiments showed that deep models equipped with the attention mechanism deliver high-quality classification, and repeatedly identify significant bands in the training data, permitting the creation of refined and extremely compact sets that retain the most meaningful features.



rate research

Read More

Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical practice. The purpose of this paper is to present an automatic proximal femur segmentation method that is based on deep convolutional neural networks (CNNs). This study had institutional review board approval and written informed consent was obtained from all subjects. A dataset of volumetric structural MR images of the proximal femur from 86 subject were manually-segmented by an expert. We performed experiments by training two different CNN architectures with multiple number of initial feature maps and layers, and tested their segmentation performance against the gold standard of manual segmentations using four-fold cross-validation. Automatic segmentation of the proximal femur achieved a high dice similarity score of 0.94$pm$0.05 with precision = 0.95$pm$0.02, and recall = 0.94$pm$0.08 using a CNN architecture based on 3D convolution exceeding the performance of 2D CNNs. The high segmentation accuracy provided by CNNs has the potential to help bring the use of structural MRI measurements of bone quality into clinical practice for management of osteoporosis.
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated by the well-known curse of dimensionality phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labelling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33 - 99.39% for these benchmark study sites.
A reliable sense-and-avoid system is critical to enabling safe autonomous operation of unmanned aircraft. Existing sense-and-avoid methods often require specialized sensors that are too large or power intensive for use on small unmanned vehicles. This paper presents a method to estimate object distances based on visual image sequences, allowing for the use of low-cost, on-board monocular cameras as simple collision avoidance sensors. We present a deep recurrent convolutional neural network and training method to generate depth maps from video sequences. Our network is trained using simulated camera and depth data generated with Microsofts AirSim simulator. Empirically, we show that our model achieves superior performance compared to models generated using prior methods.We further demonstrate that the method can be used for sense-and-avoid of obstacles in simulation.
Coronary calcium causes beam hardening and blooming artifacts on cardiac computed tomography angiography (CTA) images, which lead to overestimation of lumen stenosis and reduction of diagnostic specificity. To properly remove coronary calcification and restore arterial lumen precisely, we propose a machine learning-based method with a multi-step inpainting process. We developed a new network configuration, Dense-Unet, to achieve optimal performance with low computational cost. Results after the calcium removal process were validated by comparing with gold-standard X-ray angiography. Our results demonstrated that removing coronary calcification from images with the proposed approach was feasible, and may potentially improve the diagnostic accuracy of CTA.
Convolutional neural networks (CNN) have made great progress for synthetic aperture radar (SAR) images change detection. However, sampling locations of traditional convolutional kernels are fixed and cannot be changed according to the actual structure of the SAR images. Besides, objects may appear with different sizes in natural scenes, which requires the network to have stronger multi-scale representation ability. In this paper, a novel underline{D}eformable underline{R}esidual Convolutional Neural underline{N}etwork (DRNet) is designed for SAR images change detection. First, the proposed DRNet introduces the deformable convolutional sampling locations, and the shape of convolutional kernel can be adaptively adjusted according to the actual structure of ground objects. To create the deformable sampling locations, 2-D offsets are calculated for each pixel according to the spatial information of the input images. Then the sampling location of pixels can adaptively reflect the spatial structure of the input images. Moreover, we proposed a novel pooling module replacing the vanilla pooling to utilize multi-scale information effectively, by constructing hierarchical residual-like connections within one pooling layer, which improve the multi-scale representation ability at a granular level. Experimental results on three real SAR datasets demonstrate the effectiveness of the proposed DRNet.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا