Do you want to publish a course? Click here

SPLBoost: An Improved Robust Boosting Algorithm Based on Self-paced Learning

92   0   0.0 ( 0 )
 Added by Yao Wang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

It is known that Boosting can be interpreted as a gradient descent technique to minimize an underlying loss function. Specifically, the underlying loss being minimized by the traditional AdaBoost is the exponential loss, which is proved to be very sensitive to random noise/outliers. Therefore, several Boosting algorithms, e.g., LogitBoost and SavageBoost, have been proposed to improve the robustness of AdaBoost by replacing the exponential loss with some designed robust loss functions. In this work, we present a new way to robustify AdaBoost, i.e., incorporating the robust learning idea of Self-paced Learning (SPL) into Boosting framework. Specifically, we design a new robust Boosting algorithm based on SPL regime, i.e., SPLBoost, which can be easily implemented by slightly modifying off-the-shelf Boosting packages. Extensive experiments and a theoretical characterization are also carried out to illustrate the merits of the proposed SPLBoost.

rate research

Read More

Curriculum reinforcement learning (CRL) improves the learning speed and stability of an agent by exposing it to a tailored series of tasks throughout learning. Despite empirical successes, an open question in CRL is how to automatically generate a curriculum for a given reinforcement learning (RL) agent, avoiding manual design. In this paper, we propose an answer by interpreting the curriculum generation as an inference problem, where distributions over tasks are progressively learned to approach the target task. This approach leads to an automatic curriculum generation, whose pace is controlled by the agent, with solid theoretical motivation and easily integrated with deep RL algorithms. In the conducted experiments, the curricula generated with the proposed algorithm significantly improve learning performance across several environments and deep RL algorithms, matching or outperforming state-of-the-art existing CRL algorithms.
168 - Aoxue Li , Weiran Huang , Xu Lan 2020
Few-shot learning (FSL) has attracted increasing attention in recent years but remains challenging, due to the intrinsic difficulty in learning to generalize from a few examples. This paper proposes an adaptive margin principle to improve the generalization ability of metric-based meta-learning approaches for few-shot learning problems. Specifically, we first develop a class-relevant additive margin loss, where semantic similarity between each pair of classes is considered to separate samples in the feature embedding space from similar classes. Further, we incorporate the semantic context among all classes in a sampled training task and develop a task-relevant additive margin loss to better distinguish samples from different classes. Our adaptive margin method can be easily extended to a more realistic generalized FSL setting. Extensive experiments demonstrate that the proposed method can boost the performance of current metric-based meta-learning approaches, under both the standard FSL and generalized FSL settings.
Generalization and adaptation of learned skills to novel situations is a core requirement for intelligent autonomous robots. Although contextual reinforcement learning provides a principled framework for learning and generalization of behaviors across related tasks, it generally relies on uninformed sampling of environments from an unknown, uncontrolled context distribution, thus missing the benefits of structured, sequential learning. We introduce a novel relative entropy reinforcement learning algorithm that gives the agent the freedom to control the intermediate task distribution, allowing for its gradual progression towards the target context distribution. Empirical evaluation shows that the proposed curriculum learning scheme drastically improves sample efficiency and enables learning in scenarios with both broad and sharp target context distributions in which classical approaches perform sub-optimally.
105 - Zhong Ji , Jin Li , Qiang Wang 2021
General Continual Learning (GCL) aims at learning from non independent and identically distributed stream data without catastrophic forgetting of the old tasks that dont rely on task boundaries during both training and testing stages. We reveal that the relation and feature deviations are crucial problems for catastrophic forgetting, in which relation deviation refers to the deficiency of the relationship among all classes in knowledge distillation, and feature deviation refers to indiscriminative feature representations. To this end, we propose a Complementary Calibration (CoCa) framework by mining the complementary models outputs and features to alleviate the two deviations in the process of GCL. Specifically, we propose a new collaborative distillation approach for addressing the relation deviation. It distills models outputs by utilizing ensemble dark knowledge of new models outputs and reserved outputs, which maintains the performance of old tasks as well as balancing the relationship among all classes. Furthermore, we explore a collaborative self-supervision idea to leverage pretext tasks and supervised contrastive learning for addressing the feature deviation problem by learning complete and discriminative features for all classes. Extensive experiments on four popular datasets show that our CoCa framework achieves superior performance against state-of-the-art methods.
144 - Yiwei Zhang , Chunbiao Zhu , Ge Li 2019
A fast and effective motion deblurring method has great application values in real life. This work presents an innovative approach in which a self-paced learning is combined with GAN to deblur image. First, We explain that a proper generator can be used as deep priors and point out that the solution for pixel-based loss is not same with the one for perception-based loss. By using these ideas as starting points, a Bi-Skip network is proposed to improve the generating ability and a bi-level loss is adopted to solve the problem that common conditions are non-identical. Second, considering that the complex motion blur will perturb the network in the training process, a self-paced mechanism is adopted to enhance the robustness of the network. Through extensive evaluations on both qualitative and quantitative criteria, it is demonstrated that our approach has a competitive advantage over state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا