No Arabic abstract
In this article we present an experimental proposal for quantum enhanced estimation of optomechanical parameters. The precision of the estimation is improved by using the technique of weak value amplification, which can enlarge the radiation pressure effect of a single-photon on a nano/micro mechanical oscillator. This task is accomplished by using two interferometric setups. Single-photon pulses are sent through one interferometer, producing a maximally path entangled state which drives the cavity optomechanical system. The photons are then postselected in one of the detectors in the output. A second interferometer, whose operation is triggered by every successful postselection, performs an optical measurement of the phase shift generated by the optomechanical system on a classical beam, which encodes the information of the optomechanical parameters. In the presence of fully time-correlated noise, we show that the Fisher information is improved as compared to a standard measurement that employs no postselection.
I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable.
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a lower bound on the QFI which we call the sub-Quantum Fisher Information (sub-QFI). The bound can be efficiently estimated on a quantum computer for an $n$-qubit state using $2n$ qubits. The sub-QFI is based on the super-fidelity, an upper bound on Uhlmanns fidelity. We analyze the sub-QFI in the context of unitary families, where we derive several crucial properties including its geometrical interpretation. In particular, we prove that the QFI and the sub-QFI are maximized for the same optimal state, which implies that the sub-QFI is faithful to the QFI in the sense that both quantities share the same global extrema. Based on this faithfulness, the sub-QFI acts as an efficiently computable surrogate for the QFI for quantum sensing and quantum metrology applications. Finally, we provide additional meaning to the sub-QFI as a measure of coherence, asymmetry, and purity loss.
Weak values arise experimentally as conditioned averages of weak (noisy) observable measurements that minimally disturb an initial quantum state, and also as dynamical variables for reduced quantum state evolution even in the absence of measurement. These averages can exceed the eigenvalue range of the observable ostensibly being estimated, which has prompted considerable debate regarding their interpretation. Classical conditioned averages of noisy signals only show such anomalies if the quantity being measured is also disturbed prior to conditioning. This fact has recently been rediscovered, along with the question whether anomalous weak values are merely classical disturbance effects. Here we carefully review the role of the weak value as both a conditioned observable estimation and a dynamical variable, and clarify why classical disturbance models will be insufficient to explain the weak value unless they can also simulate other quantum interference phenomena.
In recent proposals for achieving optical super-resolution, variants of the Quantum Fisher Information (QFI) quantify the attainable precision. We find that claims about a strong enhancement of the resolution resulting from coherence effects are questionable because they refer to very small subsets of the data without proper normalization. When the QFI is normalized, accounting for the strength of the signal, there is no advantage of coherent sources over incoherent ones. Our findings have a bearing on further studies of the achievable precision of optical instruments.
The dynamics of two variants of quantum Fisher information under decoherence are investigated from a geometrical point of view. We first derive the explicit formulas of these two quantities for a single qubit in terms of the Bloch vector. Moreover, we obtain analytical results for them under three different decoherence channels, which are expressed as affine transformation matrices. Using the hierarchy equation method, we numerically study the dynamics of both the two information in a dissipative model and compare the numerical results with the analytical ones obtained by applying the rotating-wave approximation. We further express the two information quantities in terms of the Bloch vector for a qudit, by expanding the density matrix and Hermitian operators in a common set of generators of the Lie algebra $mathfrak{su}(d)$. By calculating the dynamical quantum Fisher information, we find that the collisional dephasing significantly diminishes the precision of phase parameter with the Ramsey interferometry.