Do you want to publish a course? Click here

Quantum Fisher Information with Coherence

102   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent proposals for achieving optical super-resolution, variants of the Quantum Fisher Information (QFI) quantify the attainable precision. We find that claims about a strong enhancement of the resolution resulting from coherence effects are questionable because they refer to very small subsets of the data without proper normalization. When the QFI is normalized, accounting for the strength of the signal, there is no advantage of coherent sources over incoherent ones. Our findings have a bearing on further studies of the achievable precision of optical instruments.



rate research

Read More

Circular dichroism (CD) is a widely used technique for investigating optically chiral molecules, especially for biomolecules. It is thus of great importance that these parameters be estimated precisely so that the molecules with desired functionalities can be designed. In order to surpass the limits of classical measurements, we need to probe the system with quantum light. We develop quantum Fisher information matrix (QFIM) for precision estimates of the circular dichroism and the optical rotary dispersion for a variety of input quantum states of light. The Cramer-Rao bounds, for all four chirality parameters are obtained, from QFIM for (a) single photon input states with a specific linear polarization and for (b) NOON states having two photons with both either left polarized or right polarized. The QFIM bounds, using quantum light, are compared with bounds obtained for classical light beams i.e., beams in coherent states. Quite generally, both the single photon state and the NOON state exhibit superior precision in the estimation of absorption and phase shift in relation to a coherent source of comparable intensity, especially in the weak absorption regime. In particular, the NOON state naturally offers the best precision among the three. We compare QFIM bounds with the error sensitivity bounds, as the latter are relatively easier to measure whereas the QFIM bounds require full state tomography. We also outline an empirical scheme for estimating the measurement sensitivities by projective measurements with single-photon detectors.
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a lower bound on the QFI which we call the sub-Quantum Fisher Information (sub-QFI). The bound can be efficiently estimated on a quantum computer for an $n$-qubit state using $2n$ qubits. The sub-QFI is based on the super-fidelity, an upper bound on Uhlmanns fidelity. We analyze the sub-QFI in the context of unitary families, where we derive several crucial properties including its geometrical interpretation. In particular, we prove that the QFI and the sub-QFI are maximized for the same optimal state, which implies that the sub-QFI is faithful to the QFI in the sense that both quantities share the same global extrema. Based on this faithfulness, the sub-QFI acts as an efficiently computable surrogate for the QFI for quantum sensing and quantum metrology applications. Finally, we provide additional meaning to the sub-QFI as a measure of coherence, asymmetry, and purity loss.
152 - A. T. Rezakhani , M. Hassani , 2015
In estimating an unknown parameter of a quantum state the quantum Fisher information (QFI) is a pivotal quantity, which depends on the state and its derivate with respect to the unknown parameter. We prove the continuity property for the QFI in the sense that two close states with close first derivatives have close QFIs. This property is completely general and irrespective of dynamics or how states acquire their parameter dependence and also the form of parameter dependence---indeed this continuity is basically a feature of the classical Fisher information that in the case of the QFI naturally carries over from the manifold of probability distributions onto the manifold of density matrices. We demonstrate that in the special case where the dependence of the states on the unknown parameter comes from one dynamical map (quantum channel), the continuity holds in its reduced form with respect to the initial states. In addition, we show that when one initial state evolves through two different quantum channels, the continuity relation applies in its general form. A situation in which such scenario can occur is an open-system metrology where one of the maps represents the ideal dynamics whereas the other map represents the real (noisy) dynamics. In the making of our main result, we also introduce a regularized representation for the symmetric logarithmic derivative which works for general states even with incomplete rank, and its features continuity similarly to the QFI.
We show that both the classical as well as the quantum definitions of the Fisher information faithfully identify resourceful quantum states in general quantum resource theories, in the sense that they can always distinguish between states with and without a given resource. This shows that all quantum resources confer an advantage in metrology, and establishes the Fisher information as a universal tool to probe the resourcefulness of quantum states. We provide bounds on the extent of this advantage, as well as a simple criterion to test whether different resources are useful for the estimation of unitarily encoded parameters. Finally, we extend the results to show that the Fisher information is also able to identify the dynamical resourcefulness of quantum operations.
65 - P. Liu , P. Wang , W. Yang 2016
Squeezed-state interferometry plays an important role in quantum-enhanced optical phase estimation, as it allows the estimation precision to be improved up to the Heisenberg limit by using ideal photon-number-resolving detectors at the output ports. Here we show that for each individual $N$-photon component of the phase-matched coherent $otimes$ squeezed vacuum input state, the classical Fisher information always saturates the quantum Fisher information. Moreover, the total Fisher information is the sum of the contributions from each individual $N$-photon components, where the largest $N$ is limited by the finite number resolution of available photon counters. Based on this observation, we provide an approximate analytical formula that quantifies the amount of lost information due to the finite photon number resolution, e.g., given the mean photon number $bar{n}$ in the input state, over $96$ percent of the Heisenberg limit can be achieved with the number resolution larger than $5bar{n}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا