Do you want to publish a course? Click here

Reconstructing weak values without weak measurements

144   0   0.0 ( 0 )
 Added by Lars M. Johansen
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable.



rate research

Read More

A weak measurement performed on a pre- and post-selected quantum system can result in an average value that lies outside of the observables spectrum. This effect, usually referred to as an anomalous weak value, is generally believed to be possible only when a non-trivial post-selection is performed, i.e., when only a particular subset of the data is considered. Here we show, however, that this is not the case in general: in scenarios in which several weak measurements are sequentially performed, an anomalous weak value can be obtained without post-selection, i.e., without discarding any data. We discuss several questions that this raises about the subtle relation between weak values and pointer positions for sequential weak measurements. Finally, we consider some implications of our results for the problem of distinguishing different causal structures.
Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of particles. Unfortunately, such nonlocal or joint observables often prove difficult to measure weakly in practice (for instance, in optics -- a common testing ground for this technique -- strong photon-photon interactions would be needed). Here we derive a general, experimentally feasible, method for extracting these values from correlations between single-particle observables.
121 - Justin Dressel 2014
Weak values arise experimentally as conditioned averages of weak (noisy) observable measurements that minimally disturb an initial quantum state, and also as dynamical variables for reduced quantum state evolution even in the absence of measurement. These averages can exceed the eigenvalue range of the observable ostensibly being estimated, which has prompted considerable debate regarding their interpretation. Classical conditioned averages of noisy signals only show such anomalies if the quantity being measured is also disturbed prior to conditioning. This fact has recently been rediscovered, along with the question whether anomalous weak values are merely classical disturbance effects. Here we carefully review the role of the weak value as both a conditioned observable estimation and a dynamical variable, and clarify why classical disturbance models will be insufficient to explain the weak value unless they can also simulate other quantum interference phenomena.
223 - Lupei Qin , Wei Feng , 2015
In this work we revisit the important and controversial concept of quantum weak values, aiming to provide a simplified understanding to its associated physics and the origin of anomaly. Taking the Stern-Gerlach setup as a working system, we base our analysis on an exact treatment in terms of quantum Bayesian approach. We also make particular connection with a very recent work, where the anomaly of the weak values was claimed from the pure statistics in association with disturbance and post-selection, rather than the unique quantum nature. Our analysis resolves the related controversies through a clear and quantitative way.
We examine weak measurements of arbitrary observables where the object is prepared in a mixed state and on which measurements with imperfect detectors are made. The weak value of an observable can be expressed as a conditional expectation value over an infinite class of different generalized Kirkwood quasi-probability distributions. Strange weak values for which the real part exceeds the eigenvalue spectrum of the observable can only be found if the Terletsky-Margenau-Hill distribution is negative, or, equivalently, if the real part of the weak value of the density operator is negative. We find that a classical model of a weak measurement exists whenever the Terletsky-Margenau-Hill representation of the observable equals the classical representation of the observable and the Terletsky-Margenau-Hill distribution is nonnegative. Strange weak values alone are not sufficient to obtain a contradiction with classical models. We propose feasible weak measurements of photon number of the radiation field. Negative weak values of energy contradicts all classical stochastic models, whereas negative weak values of photon number contradict all classical stochastic models where the energy is bounded from below by the zero-point energy. We examine coherent states in particular, and find negative weak values with probabilities of 16% for kinetic energy (or squared field quadrature), 8% for harmonic oscillator energy and 50% for photon number. These experiments are robust against detector inefficiency and thermal noise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا