No Arabic abstract
Electron motion in crystals is governed by the coupling between crystal momentum and internal degrees of freedom such as spin implicit in the band structure. The description of this coupling in terms of a momentum-dependent effective field and the resultant Berry phase has greatly advanced our understanding of diverse phenomena including various Hall effects and has lead to the discovery of new states of matter exemplified by topological insulators. While experimental studies on topological systems have focused on the gapless states that emerge at the surfaces or edges, the underlying nontrivial topology in the bulk has not been manifested. Here we report the observation of Berrys phase in magneto-oscillations and quantum Hall effects of a coupled electron-hole system hosted in quantum wells with inverted bands. In contrast to massless Dirac fermions in graphene, for which the Berry phase $Gamma$ is quantized at $pi$, we observe that $Gamma$ varies with the Fermi level $E_mathrm{F}$, passing through $pi$ as $E_mathrm{F}$ traverses the energy gap that opens due to electron-hole hybridization. We show that the evolution of $Gamma$ is a manifestation of the pseudospin texture that encodes the momentum-dependent electron-hole coupling and is therefore a bulk signature of the nontrivial band topology.
We show that band topology can dramatically change the photophysics of two-dimensional (2D) semiconductors. For systems in which states near the band extrema are of multiple orbitals character and the spinors describing the orbital components (pseudospins) pick up nonzero winding numbers (topological invariants) around the extremal k-point, the optical strength and nature (i.e., helicity) of the excitonic states are dictated by the optical matrix element winding number, a unique and heretofore unrecognized characteristic. We illustrate these findings in three gapped graphene systems - monolayer graphene with inequivalent sublattices and biased bi- and tri-layer graphene, where the pseudospin textures manifest into a unique optical matrix element winding pattern associated with different valley and photon circular polarization. This winding-number physics leads to novel exciton series and optical selection rules, with each valley hosting multiple bright excitons coupled to light of different helicity. This valley-exciton selective circular dichroism can be unambiguously detected using optical spectroscopy.
Quantum materials that host a flat band, such as pseudospin-1 lattices and magic-angle twisted bilayer graphene, can exhibit drastically new physical phenomena including unconventional superconductivity, orbital ferromagnetism, and Chern insulating behaviors. We report a surprising class of electronic in-gap edge states in pseudospin-1 materials without the conventional need of band-inversion topological phase transitions or introducing magnetism via an external magnetic type of interactions. In particular, we find that, in two-dimensional gapped (insulating) Dirac systems of massive spin-1 quasiparticles, in-gap edge modes can emerge through only an {em electrostatic potential} applied to a finite domain. Associated with these unconventional edge modes are spontaneous formation of pronounced domain-wall spin textures, which exhibit the feature of out-of-plane spin-angular momentum locking on both sides of the domain boundary and are quite robust against boundary deformations and impurities despite a lack of an explicit topological origin. The in-gap modes are formally three-component evanescent wave solutions, akin to the Jackiw-Rebbi type of bound states. Such modes belong to a distinct class due to the following physical reasons: three-component spinor wave function, unusual boundary conditions, and a shifted flat band induced by the external scalar potential. Not only is the finding of fundamental importance, but it also paves the way for generating highly controllable in-gap edge states with emergent spin textures using the traditional semiconductor gate technology. Results are validated using analytic calculations of a continuum Dirac-Weyl model and tight-binding simulations of realistic materials through characterizations of local density of state spectra and resonant tunneling conductance.
We present a method to create spin-polarized beams of ballistic electrons in a two-dimensional electron system in the presence of spin-orbit interaction. Scattering of a spin-unpolarized injected beam from a lithographic barrier leads to the creation of two fully spin-polarized side beams, in addition to an unpolarized specularly reflected beam. Experimental magnetotransport data on InSb/InAlSb heterostructures demonstrate the spin-polarized reflection in a mesoscopic geometry, and confirm our theoretical predictions.
Nanomechanical resonators have demonstrated great potential for use as versatile tools in a number of emerging quantum technologies. For such applications, the performance of these systems is restricted by the decoherence of their fragile quantum states, necessitating a thorough understanding of their dissipative coupling to the surrounding environment. In bulk amorphous solids, these dissipation channels are dominated at low temperatures by parasitic coupling to intrinsic two-level system (TLS) defects, however, there remains a disconnect between theory and experiment on how this damping manifests in dimensionally-reduced nanomechanical resonators. Here, we present an optomechanically-mediated thermal ringdown technique, which we use to perform simultaneous measurements of the dissipation in four mechanical modes of a cryogenically-cooled silicon nanoresonator, with resonant frequencies ranging from 3 - 19 MHz. Analyzing the devices mechanical damping rate at fridge temperatures between 10 mK - 10 K, we demonstrate quantitative agreement with the standard tunneling model for TLS ensembles confined to one dimension. From these fits, we extract the defect density of states ($P_0 sim$ 1 - 4 $times$ 10$^{44}$ J$^{-1}$ m$^{-3}$) and deformation potentials ($gamma sim$ 1 - 2 eV), showing that each mechanical mode couples on average to less than a single thermally-active defect at 10 mK.
By analytically constructing the matrix elements of an electron-phonon interaction for the $D$ band in the Raman spectra of armchair graphene nanoribbons, we show that pseudospin and momentum conservation result in (i) a $D$ band consisting of two components, (ii) a $D$ band Raman intensity that is enhanced only when the polarizations of the incident and scattered light are parallel to the armchair edge, and (iii) the $D$ band softening/hardening behavior caused by the Kohn anomaly effect is correlated with that of the $G$ band. Several experiments are mentioned that are relevant to these results. It is also suggested that pseudospin is independent of the boundary condition for the phonon mode, while momentum conservation depends on it.