Do you want to publish a course? Click here

Two-Level System Damping in a Quasi-One-Dimensional Optomechanical Resonator

112   0   0.0 ( 0 )
 Added by Bradley Hauer
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanomechanical resonators have demonstrated great potential for use as versatile tools in a number of emerging quantum technologies. For such applications, the performance of these systems is restricted by the decoherence of their fragile quantum states, necessitating a thorough understanding of their dissipative coupling to the surrounding environment. In bulk amorphous solids, these dissipation channels are dominated at low temperatures by parasitic coupling to intrinsic two-level system (TLS) defects, however, there remains a disconnect between theory and experiment on how this damping manifests in dimensionally-reduced nanomechanical resonators. Here, we present an optomechanically-mediated thermal ringdown technique, which we use to perform simultaneous measurements of the dissipation in four mechanical modes of a cryogenically-cooled silicon nanoresonator, with resonant frequencies ranging from 3 - 19 MHz. Analyzing the devices mechanical damping rate at fridge temperatures between 10 mK - 10 K, we demonstrate quantitative agreement with the standard tunneling model for TLS ensembles confined to one dimension. From these fits, we extract the defect density of states ($P_0 sim$ 1 - 4 $times$ 10$^{44}$ J$^{-1}$ m$^{-3}$) and deformation potentials ($gamma sim$ 1 - 2 eV), showing that each mechanical mode couples on average to less than a single thermally-active defect at 10 mK.



rate research

Read More

The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions (2D), especially in models of closely packed perfect arrays of 1D quantum wires, each being described as a LL. For instance, such coupled-wire models have been successfully used to construct 2D anisotropic non-Fermi liquids, various quantum Hall states, topological phases, and quantum spin liquids. Despite these exciting theoretical developments, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moire superlattice made of twisted bilayer tungsten ditelluride (tWTe$_{2}$). Originating from the anisotropic lattice of the monolayer, the moire pattern of tWTe$_{2}$ hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tunable by the twist angle between layers. At a twist angle of ~ 5 degrees, we find that hole-doped tWTe$_{2}$ exhibits exceptionally large transport anisotropy with a resistance ratio of ~ 1000 between two orthogonal in-plane directions, suggesting the formation of 1D channels. The conductance measurement reveals a power-law scaling behavior, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of 2D correlated and topological quantum phases based on coupled-wire models and LL physics.
A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultra-dense magnetic memories. Here, we review recent progress in the field of skyrmionics, which is concerned with studies of tiny whirls of magnetic configurations for novel memory and logic applications, with a particular emphasis on antiskyrmions. Magnetic antiskyrmions represent analogs of skyrmions with opposite topological charge. Just like skyrmions, antiskyrmions can be stabilized by the Dzyaloshinskii-Moriya interaction, as has been demonstrated in a recent experiment. Here, we emphasize differences between skyrmions and antiskyrmions, e.g., in the context of the topological Hall effect, skyrmion Hall effect, as well as nucleation and stability. Recent progress suggests that anitskyrmions can be potentially useful for many device applications. Antiskyrmions offer advantages over skyrmions as they can be driven without the Hall-like motion, offer increased stability due to dipolar interactions, and can be realized above room temperature.
Extreme confinement of electromagnetic energy by phonon polaritons holds the promise of strong and new forms of control over the dynamics of matter. To bring such control to the atomic-scale limit, it is important to consider phonon polaritons in two-dimensional (2D) systems. Recent studies have pointed out that in 2D, splitting between longitudinal and transverse optical (LO and TO) phonons is absent at the $Gamma$ point, even for polar materials. Does this lack of LO--TO splitting imply the absence of a phonon polariton in polar monolayers? Here, we derive a first-principles expression for the conductivity of a polar monolayer specified by the wavevector-dependent LO and TO phonon dispersions. In the long-wavelength (local) limit, we find a universal form for the conductivity in terms of the LO phonon frequency at the $Gamma$ point, its lifetime, and the group velocity of the LO phonon. Our analysis reveals that the phonon polariton of 2D is simply the LO phonon of the 2D system. For the specific example of hexagonal boron nitride (hBN), we estimate the confinement and propagation losses of the LO phonons, finding that high confinement and reasonable propagation quality factors coincide in regions which may be difficult to detect with current near-field optical microscopy techniques. Finally, we study the interaction of external emitters with two-dimensional hBN nanostructures, finding extreme enhancement of spontaneous emission due to coupling with localized 2D phonon polaritons, and the possibility of multi-mode strong and ultra-strong coupling between an external emitter and hBN phonons. This may lead to the design of new hybrid states of electrons and phonons based on strong coupling.
We present a method to create spin-polarized beams of ballistic electrons in a two-dimensional electron system in the presence of spin-orbit interaction. Scattering of a spin-unpolarized injected beam from a lithographic barrier leads to the creation of two fully spin-polarized side beams, in addition to an unpolarized specularly reflected beam. Experimental magnetotransport data on InSb/InAlSb heterostructures demonstrate the spin-polarized reflection in a mesoscopic geometry, and confirm our theoretical predictions.
Non-Hermitian systems can host topological states with novel topological invariants and bulk-edge correspondences that are distinct from conventional Hermitian systems. Here we show that two unique classes of non-Hermitian 2D topological phases, a 2$mathbb{Z}$ non-Hermitian Chern insulator and a $mathbb{Z}_{2}$ topological semimetal, can be realized by tuning staggered asymmetric hopping strengths in a 1D superlattice. These non-Hermitian topological phases support real edge modes due to robust $mathcal{PT}$-symmetric-like spectra and can coexist in certain parameter regime. The proposed phases can be experimentally realized in photonic or atomic systems and may open an avenue for exploring novel classes of non-Hermitian topological phases with 1D superlattices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا