No Arabic abstract
By analytically constructing the matrix elements of an electron-phonon interaction for the $D$ band in the Raman spectra of armchair graphene nanoribbons, we show that pseudospin and momentum conservation result in (i) a $D$ band consisting of two components, (ii) a $D$ band Raman intensity that is enhanced only when the polarizations of the incident and scattered light are parallel to the armchair edge, and (iii) the $D$ band softening/hardening behavior caused by the Kohn anomaly effect is correlated with that of the $G$ band. Several experiments are mentioned that are relevant to these results. It is also suggested that pseudospin is independent of the boundary condition for the phonon mode, while momentum conservation depends on it.
Carbon-based magnetic structures promise significantly longer coherence times than traditional magnetic materials, which is of fundamental importance for spintronic applications. An elegant way of achieving carbon-based magnetic moments is the design of graphene nanostructures with an imbalanced occupation of the two sublattices forming the carbon honeycomb lattice. According to Liebs theorem, this induces local magnetic moments that are proportional to the sublattice imbalance. Exact positioning of sublattice imbalanced nanostructures in graphene nanomaterials hence offers a route to control interactions between induced local magnetic moments and to obtain graphene nanomaterials with magnetically non-trivial ground states. Here, we show that such sublattice imbalanced nanostructures can be incorporated along a large band gap armchair graphene nanoribbon on the basis of asymmetric zigzag edge extensions, which is achieved by incorporating specifically designed precursor monomers during the bottom-up fabrication of the graphene nanoribbons. Scanning tunneling spectroscopy of an isolated and electronically decoupled zigzag edge extension reveals Hubbard-split states in accordance with theoretical predictions. Investigation of pairs of such zigzag edge extensions reveals ferromagnetic, antiferromagnetic or quenching of the magnetic interactions depending on the relative alignment of the asymmetric edge extensions. Moreover, a ferromagnetic spin chain is demonstrated for a periodic pattern of zigzag edge extensions along the nanoribbon axis. This work opens a route towards the design and fabrication of graphene nanoribbon-based spin chains with complex magnetic ground states.
In Raman spectroscopy of graphite and graphene, the $D$ band at $sim 1355$cm$^{-1}$ is used as the indication of the dirtiness of a sample. However, our analysis suggests that the physics behind the $D$ band is closely related to a very clear idea for describing a molecule, namely bonding and antibonding orbitals in graphene. In this paper, we review our recent work on the mechanism for activating the $D$ band at a graphene edge.
Topological insulators (TIs) are an emerging class of materials that host highly robust in-gap surface/interface states while maintaining an insulating bulk. While most notable scientific advancements in this field have been focused on TIs and related topological crystalline insulators in 2D and 3D, more recent theoretical work has predicted the existence of 1D symmetry-protected topological phases in graphene nanoribbons (GNRs). The topological phase of these laterally-confined, semiconducting strips of graphene is determined by their width, edge shape, and the terminating unit cell, and is characterized by a Z2 invariant (similar to 1D solitonic systems). Interfaces between topologically distinct GNRs characterized by different Z2 are predicted to support half-filled in-gap localized electronic states which can, in principle, be utilized as a tool for material engineering. Here we present the rational design and experimental realization of a topologically-engineered GNR superlattice that hosts a 1D array of such states, thus generating otherwise inaccessible electronic structure. This strategy also enables new end states to be engineered directly into the termini of the 1D GNR superlattice. Atomically-precise topological GNR superlattices were synthesized from molecular precursors on a Au(111) surface under ultra-high vacuum (UHV) conditions and characterized by low temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Our experimental results and first-principles calculations reveal that the frontier band structure of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This novel manifestation of 1D topological phases presents an entirely new route to band engineering in 1D materials based on precise control of their electronic topology, and is a promising platform for future studies of 1D quantum spin physics.
Electronic states at the ends of a narrow armchair nanoribbon give rise to a pair of non-locally entangled spins. We propose two experiments to probe these magnetic states, based on magnetometry and tunneling spectroscopy, in which correlation effects lead to a striking, nonlinear response to external magnetic fields. On the basis of low-energy theories that we derive here, it is remarkably simple to assess these nonlinear signatures for magnetic edge states. The effective theories are especially suitable in parameter regimes where other methods such as quantum Monte-Carlo simulations are exceedingly difficult due to exponentially small energy scales. The armchair ribbon setup discussed here provides a promisingly well-controlled (both experimentally and theoretically) environment for studying the principles behind edge magnetism in graphene-based nano-structures.
Quantum size effects in armchair graphene nano-ribbons (AGNR) with hydrogen termination are investigated via density functional theory (DFT) in Kohn-Sham formulation. Selection rules will be formulated, that allow to extract (approximately) the electronic structure of the AGNR bands starting from the four graphene dispersion sheets. In analogy with the case of carbon nanotubes, a threefold periodicity of the excitation gap with the ribbon width (N, number of carbon atoms per carbon slice) is predicted that is confirmed by ab initio results. While traditionally such a periodicity would be observed in electronic response experiments, the DFT analysis presented here shows that it can also be seen in the ribbon geometry: the length of a ribbon with L slices approaches the limiting value for a very large width 1 << N (keeping the aspect ratio small N << L) with 1/N-oscillations that display the electronic selection rules. The oscillation amplitude is so strong, that the asymptotic behavior is non-monotonous, i.e., wider ribbons exhibit a stronger elongation than more narrow ones.