Do you want to publish a course? Click here

Multi-twist polarization ribbon topologies in highly-confined optical fields

163   0   0.0 ( 0 )
 Added by Ebrahim Karimi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electromagnetic plane waves, solutions to Maxwells equations, are said to be `transverse in vacuum. Namely, the waves oscillatory electric and magnetic fields are confined within a plane transverse to the waves propagation direction. Under tight-focusing conditions however, the field can exhibit longitudinal electric or magnetic components, transverse spin angular momentum, or non-trivial topologies such as Mobius strips. Here, we show that when a suitably spatially structured beam is tightly focused, a 3-dimensional polarization topology in the form of a ribbon with two full twists appears in the focal volume. We study experimentally the stability and dynamics of the observed polarization ribbon by exploring its topological structure for various radii upon focusing and for different propagation planes.

rate research

Read More

2D materials support unique excitations of quasi-particles that consist of a material excitation and photons called polaritons. Especially interesting are in-plane propagating polaritons which can be confined to a single monolayer and carry large momentum. In this work, we report the existence of a new type of in-plane propagating polariton, supported on monolayer transition-metal-dicalcogonide (TMD) in the visible spectrum, which has not yet been observed. This 2D in-plane exciton-polariton (2DEP) is described by the coupling of an electromagnetic light field with the collective oscillations of the excitons supported by monolayer TMDs. We expose the specific experimental conditions required for the excitation of the 2DEP and show that these can be created if the TMD is encapsulated with hexagonal-boron-nitride (hBN) and cooled to cryogenic temperatures. In addition, we compare the properties of the 2DEPs with those of surface-plasmons-polaritons (SPPs) at the same spectral range, and find that the 2DEP exhibit over two orders-of-magnitude larger wavelength confinement. Finally, we propose two configurations for the possible experimental observation of 2DEPs.
Vortex crystals are geometric arrays of vortices found in various physics fields, owing their regular internal structure to mutual interactions within a spatially confined system. In optics, vortex crystals may form spontaneously within a nonlinear resonator but their usefulness is limited by the lack of control over their topology. On the other hand, programmable devices used in free space, like spatial light modulators, allow the design of nearly arbitrary vortex distributions but without any intrinsic dynamics. By combining non-Hermitian optics with on-demand topological transformations enabled by metasurfaces, we report a solid-state laser that generates vortex crystals with mutual interactions and actively-tunable topologies. We demonstrate 10x10 coherent vortex arrays with nonlocal coupling networks that are not limited to nearest-neighbor coupling but rather dictated by the crystals topology. The vortex crystals exhibit sharp Bragg diffraction peaks, witnessing their coherence and high topological charge purity, which we resolve spatially over the whole lattice by introducing a parallelized analysis technique. By structuring light at the source, we enable complex transformations that allow to arbitrarily partition the orbital angular momentum inside the cavity and to heal topological charge defects, making these resonators a robust and versatile tool for advanced applications in topological optics.
Snapping of a slender structure is utilized in a wide range of natural and man-made systems, mostly to achieve rapid movement without relying on muscle-like elements. Although several mechanisms for elastic energy storage and rapid release have been studied in detail, a general understanding of the approach to design such a kinetic system is a key challenge in mechanics. Here we study a twist-driven buckling and fast flip dynamics of a geometrically constraint ribbon by combining experiments, numerical simulations, and analytical theory. We identify two distinct types of shape transitions; a narrow ribbon snaps, whereas a wide ribbon forms a pair of localized helices. We construct a phase diagram and explain the origin of the boundary, which is determined only by geometry. We quantify effects of gravity and clarify time scale dictating the rapid flipping. Our study reveals the unique role of geometric twist-bend coupling on the fast dynamics of a thin constrained structure, which has implications for a wide range of biophysical and applied physical problems.
we report the identification of a localised current structure inside the JET plasma. It is a field aligned closed helical ribbon, carrying current in the same direction as the background current profile (co-current), rotating toroidally with the ion velocity (co-rotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first ELM.
In this study, we investigated the energy partition of four confined circular-ribbon flares (CRFs) near the solar disk center, which are observed simultaneously by SDO, GOES, and RHESSI. We calculated different energy components, including the radiative outputs in 1$-$8, 1$-$70, and 70$-$370 {AA}, total radiative loss, peak thermal energy derived from GOES and RHESSI, nonthermal energy in flare-accelerated electrons, and magnetic free energy before flares. It is found that the energy components increase systematically with the flare class, indicating that more energies are involved in larger flares. The magnetic free energies are larger than the nonthermal energies and radiative outputs of flares, which is consistent with the magnetic nature of flares. The ratio $frac{E_{nth}}{E_{mag}}$ of the four flares, being 0.70$-$0.76, is considerably higher than that of eruptive flares. Hence, this ratio may serve as an important factor that discriminates confined and eruptive flares. The nonthermal energies are sufficient to provide the heating requirements including the peak thermal energy and radiative loss. Our findings impose constraint on theoretical models of confined CRFs and have potential implication for the space weather forecast.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا