Do you want to publish a course? Click here

Optical vortex crystals with dynamic topologies

143   0   0.0 ( 0 )
 Added by Marco Piccardo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Vortex crystals are geometric arrays of vortices found in various physics fields, owing their regular internal structure to mutual interactions within a spatially confined system. In optics, vortex crystals may form spontaneously within a nonlinear resonator but their usefulness is limited by the lack of control over their topology. On the other hand, programmable devices used in free space, like spatial light modulators, allow the design of nearly arbitrary vortex distributions but without any intrinsic dynamics. By combining non-Hermitian optics with on-demand topological transformations enabled by metasurfaces, we report a solid-state laser that generates vortex crystals with mutual interactions and actively-tunable topologies. We demonstrate 10x10 coherent vortex arrays with nonlocal coupling networks that are not limited to nearest-neighbor coupling but rather dictated by the crystals topology. The vortex crystals exhibit sharp Bragg diffraction peaks, witnessing their coherence and high topological charge purity, which we resolve spatially over the whole lattice by introducing a parallelized analysis technique. By structuring light at the source, we enable complex transformations that allow to arbitrarily partition the orbital angular momentum inside the cavity and to heal topological charge defects, making these resonators a robust and versatile tool for advanced applications in topological optics.



rate research

Read More

Rankine vortex charateristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of the composite vortex fields. Based on these findings we propose a vortex stellar interferometer.
We analyze the existence and stability of two-component vector solitons in nematic liquid crystals for which one of the components carries angular momentum and describes a vortex beam. We demonstrate that the nonlocal, nonlinear response can dramatically enhance the field coupling leading to the stabilization of the vortex beam when the amplitude of the second beam exceeds some threshold value. We develop a variational approach to describe this effect analytically.
Electromagnetic plane waves, solutions to Maxwells equations, are said to be `transverse in vacuum. Namely, the waves oscillatory electric and magnetic fields are confined within a plane transverse to the waves propagation direction. Under tight-focusing conditions however, the field can exhibit longitudinal electric or magnetic components, transverse spin angular momentum, or non-trivial topologies such as Mobius strips. Here, we show that when a suitably spatially structured beam is tightly focused, a 3-dimensional polarization topology in the form of a ribbon with two full twists appears in the focal volume. We study experimentally the stability and dynamics of the observed polarization ribbon by exploring its topological structure for various radii upon focusing and for different propagation planes.
Far-field slit-diffraction of circular optical-vortex (OV) beams is efficient for measurement of the topological charge (TC) magnitude but does not reveal its sign. We show that this is because in the common diffraction schemes the diffraction plane coincides with the incident OV waist plane. With explicit involvement of the incident beam spherical wavefront and based on the examples of Laguerre-Gaussian modes we show that the far-field profile possesses an asymmetry depending on the wavefront curvature and the TC sign. These features enable simple and efficient ways for the simultaneous diagnostics of the TC magnitude and sign, which can be useful in many OV applications, including the OV-assisted metrology and information processing.
Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polarization and an orbital angular momentum (OAM) owing to the azimuthally dependent phase. Even though such angular momenta are longitudinal in general, a SAM transverse to the propagation has opened up a variety of key applications [1]. In contrast, investigations of the transverse OAM are quite rare due to its complex nature. Here we demonstrate a simple method to generate a three dimensional (3D) optical wave packet with a controllable purely transverse OAM. Such a wave packet is a spatiotemporal (ST) vortex, which resembles an advancing cyclone, with optical energy flowing in the spatial and temporal dimension. Contrary to the transverse SAM, the magnitude of the transverse OAM carried by the photonic cyclone is scalable to a larger value by simple adjustments. Since the ST vortex carries a controllable OAM in the unique transverse dimension, it has a strong potential for novel applications that may not be possible otherwise. The scheme reported here can be readily adapted for the other spectra regime and different wave fields, opening tremendous opportunities for the study and applications of ST vortex in much broader scopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا