Do you want to publish a course? Click here

Finding pathways for stoichiometric Co4N thin films

78   0   0.0 ( 0 )
 Added by Mukul Gupta
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we studied the pathways for formation of stoichiometric tcn~thin films. Polycrystalline and epitaxial tcn~films were prepared using reactive direct current magnetron (dcMS) sputtering technique. A systematic variation in the substrate temperature (Ts) during the dcMS process reveals that the lattice parameter (LP) decreases as Ts~increases. We found that nearly stoichiometric tcn~films can be obtained when Ts~= 300,K. However, they emerge from the transient state of Co target ($phi$3,inch). By reducing the target size to $phi$1,inch, now the tcn~phase formation takes place from the metallic state of Co target. In this case, LP of tcn~film comes out to be $sim$99p~of the value expected for tcn. This is the largest value of LP found so far for tcn. The pathways achieved for formation of polycrystalline tcn~were adopted to grow an epitaxial tcn~film, which shows four fold magnetic anisotropy in magneto-optic Kerr effect measurements. Detailed characterization using secondary ion mass spectroscopy indicates that N diffuses out when Ts~is raised even to 400,K. Measurement of electronic structure using x-ray photoelectron spectroscopy and x-ray absorption spectroscopy further confirms it. Magnetization measurements using bulk magnetization and polarized neutron reflectivity show that the saturation magnetization of stoichiometric tcn~film is even larger than pure Co. Since all our measurements indicated that N could be diffusing out, when tcn~films are grown at high Ts, we did actual N self-diffusion measurements in a CoN sample and found that N self-diffusion was indeed substantially higher. The outcome of this work clearly shows that the tcn~films grown prior to this work were always N deficient and the pathways for formation of a stoichiometric tcn~have been achieved.



rate research

Read More

Cs2AgBiBr6 (CABB) has been proposed as a promising non-toxic alternative to lead halide perovskites. However, low charge carrier collection efficiencies remain an obstacle for the incorporation of this material in optoelectronic applications. In this work, we study the optoelectronic properties of CABB thin films using steady state and transient absorption and reflectance spectroscopy. We find that optical measurements on such thin films are distorted as a consequence of multiple reflections within the film. Moreover, we discuss the pathways behind conductivity loss in these thin films, using a combination of microsecond transient absorption and time-resolved microwave conductivity spectroscopy. We demonstrate that a combined effect of carrier loss and localization results in the conductivity loss in CABB thin films. Moreover, we find that the charge carrier diffusion length and sample thickness are of the same order. This suggests that the materials surface is an important contributor to charge carrier loss.
391 - S. Rai , M.K.Tiwari , G. S. Lodha 2005
We report a detailed study of surface and interface properties of pulsed-laser deposited NiMnSb films on Si (100) substrate as a function of film thickness. As the thickness of films is reduced below 35 nm formation of a porous layer is observed. Porosity in this layer increases with decrease in NiMnSb film thickness. These morphological changes of the ultra thin films are reflected in the interesting transport and magnetic properties of these films. On the other hand, there are no influences of compositional in-homogeneity and surface/interface roughness on the magnetic and transport properties of the films.
Possible existence of topologically protected surface in samarium hexaboride has created a strong need for investigations allowing to distinguish between properties coming from the surface states and those originating in the (remaining) bulk. Studies of SmB6 thin films represent a favorable approach allowing well defined variations of the bulk volume that is not affected by surface states. Moreover, thin films are highly desirable for potential technology applications. However, the growth of SmB6 thin films is accompanied by technology problems, which are typically associated with maintaining the correct stoichiometry of samarium and boron. Here we present feasibility study of SmB6 thin film synthesis by pulsed laser deposition (PLD) from a single stoichiometric SmB6 target. As proved by Rutherford Backscattering Spectrometry (RBS), we succeeded to obtain the same ratio of samarium and boron in the films as that in the target. Thin films revealing characteristic electrical properties of (crystalline) SmB6 were successfully deposited on MgO, sapphire, and glass-ceramics substrates, when the substrates were kept at temperature of 600$^circ$ C during the deposition. Performed electrical resistance studies have revealed that bulk properties of the films are only slightly affected by the substrate. Our results indicate that PLD is a suitable method for complex and intensive research of SmB6 and similar systems.
LaVO$_3$ (LVO) has been proposed as a promising material for photovoltaics because its strongly correlated textit{d} electrons can facilitate the creation of multiple electron-hole pairs per incoming photon, which would lead to increased device efficiency. In this study, we intentionally grow off-stoichiometric LVO films by changing the growth conditions such as laser fluence. Our aim is to study how deviating La:V stoichiometries affect the electronic properties of LVO thin films. We find that the off-stoichiometry clearly alters the physical properties of the films. Structural characterization shows that both La-rich and V-rich films have different levels of structural distortion, with La-rich (V-rich) films showing a larger (smaller) out-of-plane lattice parameter compared to what one would expect from epitaxial strain effects alone. Both types of films show deviation from the behavior of bulk LVO in optical measurement, i.e., they do not show signatures of the expected long range orbital order, which can be a result of the structural distortions or the presence of structural domains. In transport measurements, La-rich films display clear signatures of electronic phase separation accompanying a temperature induced metal-insulator transition, while V-rich films behave as Mott insulators. The out-of-plane lattice parameter plays a crucial role in determining the transport properties, as the crossover from Mott-insulating to disorder-induced phase-separated behavior occurs around a lattice parameter value of 3.96 $overset{circ}{mathrm{A}}$, quite different from what has been previously reported.
Spintronics, which is the basis of a low-power, beyond-CMOS technology for computational and memory devices, remains up to now entirely based on critical materials such as Co, heavy metals and rare-earths. Here, we show that Mn4N, a rare-earth free ferrimagnet made of abundant elements, is an exciting candidate for the development of sustainable spintronics devices. Mn4N thin films grown epitaxially on SrTiO3 substrates possess remarkable properties, such as a perpendicular magnetisation, a very high extraordinary Hall angle (2%) and smooth domain walls, at the millimeter scale. Moreover, domain walls can be moved at record speeds by spin polarised currents, in absence of spin-orbit torques. This can be explained by the large efficiency of the adiabatic spin transfer torque, due to the conjunction of a reduced magnetisation and a large spin polarisation. Finally, we show that the application of gate voltages through the SrTiO3 substrates allows modulating the Mn4N coercive field with a large efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا