No Arabic abstract
The low-energy magnetic excitation from the highly Ca-doped quasi-one-dimensional magnet SrCa13Cu24O41 was studied in the magnetic ordered state by using inelastic neutron scattering. We observed the gapless spin-wave excitation, dispersive along the a and c axes but nondispersive along the b axis. Such excitations are attributed to the spin wave from the spin-chain sublattice. Model fitting to the experimental data gives the nearest-neighbour interaction Jc as 5.4 meV and the interchain interaction Ja = 4.4 meV. Jc is antiferromagnetic and its value is close to the nearest-neighbour interactions of the similar edge-sharing spin-chain systems such as CuGeO3. Comparing with the hole-doped spin chains in Sr14Cu24O41, which shows a spin gap due to spin dimers formed around Zhang-Rice singlets, the chains in SrCa13Cu24O41 show a gapless excitation in this study. We ascribe such a change from gapped to gapless excitations to holes transferring away from the chain sublattice into the ladder sublattice upon Ca doping.
Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultra-cold atoms. We investigate such non-trivial quantum dynamics in a new setting: a spin-1 bilinear-biquadratic chain. It has a solvable entangled groundstate, but a gapless excitation spectrum that is poorly understood. By using large-scale DMRG simulations, we find that the lowest excitations have a dynamical exponent $z$ that varies from 2 to 3.2 as we vary a coupling in the Hamiltonian. We find an additional gapless mode with a continuously varying exponent $2leq z <2.7$, which establishes the presence of multiple dynamics. In order to explain these striking properties, we construct a continuum wavefunction for the groundstate, which correctly describes the correlations and entanglement properties. We also give a continuum parent Hamiltonian, but show that additional ingredients are needed to capture the excitations of the chain. By using an exact mapping to the non-equilibrium dynamics of a classical spin chain, we find that the large dynamical exponent is due to subdiffusive spin motion. Finally, we discuss the connections to other spin chains and to a family of quantum critical models in 2d.
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically driven (Floquet) spin chains, this model does not rely upon microscopic symmetry protection: Instead, the edge states are protected purely by emergent dynamical symmetries. We explore the dynamical signatures of this Emergent Dynamical Symmetry-Protected Topological (EDSPT) order through exact numerics, time evolving block decimation, and analytic high-frequency expansion, finding evidence that the EDSPT is a stable dynamical phase protected by bulk many-body localization up to (at least) stretched-exponentially long time scales, and possibly beyond. We argue that EDSPTs are special to the quasiperiodically driven setting, and cannot arise in Floquet systems. Moreover, we find evidence of a new type of boundary criticality, in which the edge spin dynamics transition from quasiperiodic to chaotic, leading to bulk thermalization.
Signal propagation in the non equilibirum evolution after quantum quenches has recently attracted much experimental and theoretical interest. A key question arising in this context is what principles, and which of the properties of the quench, determine the characteristic propagation velocity. Here we investigate such issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum systems, the spin-1/2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal density matrices to the same final Hamiltonian using matrix product state methods. The spreading velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of excitations in an appropriately defined generalized Gibbs ensemble.
We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our approach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground state degeneracy on the torus signalling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.
We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-$S$ chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.