Do you want to publish a course? Click here

Quantum spin chains with multiple dynamics

73   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultra-cold atoms. We investigate such non-trivial quantum dynamics in a new setting: a spin-1 bilinear-biquadratic chain. It has a solvable entangled groundstate, but a gapless excitation spectrum that is poorly understood. By using large-scale DMRG simulations, we find that the lowest excitations have a dynamical exponent $z$ that varies from 2 to 3.2 as we vary a coupling in the Hamiltonian. We find an additional gapless mode with a continuously varying exponent $2leq z <2.7$, which establishes the presence of multiple dynamics. In order to explain these striking properties, we construct a continuum wavefunction for the groundstate, which correctly describes the correlations and entanglement properties. We also give a continuum parent Hamiltonian, but show that additional ingredients are needed to capture the excitations of the chain. By using an exact mapping to the non-equilibrium dynamics of a classical spin chain, we find that the large dynamical exponent is due to subdiffusive spin motion. Finally, we discuss the connections to other spin chains and to a family of quantum critical models in 2d.



rate research

Read More

We study gapless quantum spin chains with spin 1/2 and 1: the Fredkin and Motzkin models. Their entangled groundstates are known exactly but not their excitation spectra. We first express the groundstates in the continuum which allows for the calculation of spin and entanglement properties in a unified fashion. Doing so, we uncover an emergent conformal-type symmetry, thus consolidating the connection to a widely studied family of Lifshitz quantum critical points in 2d. We then obtain the low lying excited states via large-scale DMRG simulations and find that the dynamical exponent is z = 3.2 in both cases. Other excited states show a different z, indicating that these models have multiple dynamics. Moreover, we modify the spin-1/2 model by adding a ferromagnetic Heisenberg term, which changes the entire spectrum. We track the resulting non-trivial evolution of the dynamical exponents using DMRG. Finally, we exploit an exact map from the quantum Hamiltonian to the non-equilibrium dynamics of a classical spin chain to shed light on the quantum dynamics.
We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave theory the magnon dispersion for small momenta k is [Delta^2 + v_k^2 k^2]^{1/2}, where Delta^2 propto |h - h_c| and v_k^2 propto |ln k|. For fields close to h_c linear spin-wave theory breaks down and we investigate the system using density-matrix and functional renormalization group methods. The Ginzburg regime where non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition, and very broad on the disordered side.
94 - Shunsuke C. Furuya 2020
Field-induced excitation gaps in quantum spin chains are an interesting phenomenon related to confinements of topological excitations. In this paper, I present a novel type of this phenomenon. I show that an effective magnetic field with a fourfold screw symmetry induces the excitation gap accompanied by dimer orders. The gap and dimer orders induced so exhibit characteristic power-law dependence on the fourfold screw-symmetric field. Moreover, the field-induced dimer order and the field-induced Neel order coexist when the external uniform magnetic field, the fourfold screw-symmetric field, and the twofold staggered field are applied. This situation is in close connection with a compound [Cu(pym)(H$_2$O)$_4$]SiF$_6$ [J. Liu et al., Phys. Rev. Lett. 122, 057207 (2019)]. In this paper, I discuss a mechanism of field-induced dimer orders by using a density-matrix renormalization group method, a perturbation theory, and quantum field theories.
The ground state spin-wave excitations and thermodynamic properties of two types of ferrimagnetic chains are investigated: the alternating spin-1/2 spin-5/2 chain and a similar chain with a spin-1/2 pendant attached to the spin-5/2 site. Results for magnetic susceptibility, magnetization and specific heat are obtained through the finite-temperature Lanczos method with the aim in describing available experimental data, as well as comparison with theoretical results from the semiclassical approximation and the low-temperature susceptibility expansion derived from Takahashis modified spin-wave theory. In particular, we study in detail the temperature vs. magnetic field phase diagram of the spin-1/2 spin-5/2 chain, in which several low-temperature quantum phases are identified: the Luttinger Liquid phase, the ferrimagnetic plateau and the fully polarized one, and the respective quantum critical points and crossover lines.
We study the ballistic transport in integrable lattice models, i.e., the spin XXZ and Hubbard chains, close to the noninteracting limit. The stiffnesses of spin and charge currents reveal, at high temperatures, a discontinuous reduction (jump) when the interaction is introduced. We show that the jumps are related to the large degeneracy of the parent noninteracting models. These degeneracies are properly captured by the degenerate perturbation calculations which may be performed for large systems. We find that the discontinuities and the quasilocality of the conserved current in this limit can be traced back to the nonlocal character of an effective interaction. From the latter observation we identify a class of observables which show discontinuities in both models. We also argue that the known local conserved quantities are insufficient to explain the stiffnesses in the Hubbard chain in the regime of weak interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا