No Arabic abstract
We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-$S$ chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.
By means of a numerical analysis using a non-Abelian symmetry realization of the density matrix renormalization group, we study the behavior of vector chirality correlations in isotropic frustrated chains of spin S=1 and S=1/2, subject to a strong external magnetic field. It is shown that the field induces a phase with spontaneously broken chiral symmetry, in line with earlier theoretical predictions. We present results on the field dependence of the order parameter and the critical exponents.
We study the ground state of frustrated spin-S chains in a strong magnetic field in the immediate vicinity of saturation. In strongly frustrated chains, the magnon dispersion has two degenerate minima at inequivalent momenta $pm Q$, and just below the saturation field the system can be effectively represented as a dilute one-dimensional lattice gas of two species of bosons that correspond to magnons with momenta around $pm Q$. We present a theory of effective interactions in such a dilute magnon gas that allows us to make quantitative predictions for arbitrary values of the spin. With the help of this method, we are able to establish the magnetic phase diagram of frustrated chains close to saturation and study phase transitions between several nontrivial states, including a two-component Luttinger liquid, a vector chiral phase, and phases with bound magnons. We study those phase transitions numerically and find a good agreement with our analytical predictions.
We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $beta$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems.
The static structure factor S(q) of frustrated spin-1/2 chains with isotropic exchange and a singlet ground state (GS) diverges at wave vector q_m when the GS has quasi-long-range order (QLRO) with periodicity 2pi/q_m but S(q_m) is finite in bond-order-wave (BOW) phases with finite-range spin correlations. Exact diagonalization and density matrix renormalization group (DMRG) calculations of S(q) indicate a decoupled phase with QLRO and q_m = pi/2 in chains with large antiferromagnetic exchange between second neighbors. S(q_m) identifies quantum phase transitions based on GS spin correlations.
We study the frustrated ferromagnetic spin-1 chains, where the ferromagnetic nearest-neighbor coupling competes with the antiferromagnetic next-nearest-neighbor coupling. We use the density matrix renormalization group to obtain the ground states. Through the analysis of spin-spin correlations we identify the double Haldane phase as well as the ferromagnetic phase. It is shown that the ferromagnetic coupling leads to incommensurate correlations in the double Haldane phase. Such short-range correlations transform continuously into the ferromagnetic instability at the transition to the ferromagnetic phase. We also compare the results with the spin-1/2 and classical spin systems, and discuss the string orders in the system.