Do you want to publish a course? Click here

Chiral Spin Liquids in Arrays of Spin Chains

140   0   0.0 ( 0 )
 Added by Eran Sela
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our approach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground state degeneracy on the torus signalling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.



rate research

Read More

We show that a honeycomb lattice of Heisenberg spin-$1/2$ chains with three-spin junction interactions allows for controlled analytical studies of chiral spin liquids (CSLs). Tuning these interactions to a chiral fixed point, we find a Kalmeyer-Laughlin CSL phase which here is connected to the critical point of a boundary conformal field theory. Our construction directly yields a quantized spin Hall conductance and localized spinons with semionic statistics as elementary excitations. We also outline the phase diagram away from the chiral point where spinons may condense. Generalizations of our approach can provide microscopic realizations for many other CSLs.
We suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids - spin-analogues of fractional non-Abelian quantum Hall states- with gapped bulk and gapless chiral edge excitations described by the SU(2)$_n$ Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of a generalized spin-$n/2$ ladders with multi-spin exchange interaction which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2)$_n$ gapless edge excitations.
470 - W. Zhu , S. S. Gong , 2014
The topological quantum spin liquids (SL) and the nature of quantum phase transitions between them have attracted intensive attentions for the past twenty years. The extended kagome spin-1/2 antiferromagnet emerges as the primary candidate for hosting both time reversal symmetry (TRS) preserving and TRS breaking SLs based on density matrix renormalization group simulations. To uncover the nature of the novel quantum phase transition between the SL states, we study a minimum XY model with the nearest neighbor (NN) ($J_{xy}$), the second and third NN couplings ($J_{2xy}=J_{3xy}=J_{xy}$). We identify the TRS broken chiral SL (CSL) with the turn on of a small perturbation $J_{xy}sim 0.06 J_{xy}$, which is fully characterized by the fractionally quantized topological Chern number and the conformal edge spectrum as the $ u=1/2$ fractional quantum Hall state. On the other hand, the NN XY model ($J_{xy}=0$) is shown to be a critical SL state adjacent to the CSL, characterized by the gapless spin singlet excitations and also vanishing small spin triplet excitations. The quantum phase transition from the CSL to the gapless critical SL is driven by the collapsing of the neutral (spin singlet) excitation gap. By following the evolution of entanglement spectrum, we find that the transition takes place through the coupling of the edge states with opposite chiralities, which merge into the bulk and become gapless neutral excitations. The effect of the NN spin-$z$ coupling $J_z$ is also studied, which leads to a quantum phase diagram with an extended regime for the gapless SL.
By means of a numerical analysis using a non-Abelian symmetry realization of the density matrix renormalization group, we study the behavior of vector chirality correlations in isotropic frustrated chains of spin S=1 and S=1/2, subject to a strong external magnetic field. It is shown that the field induces a phase with spontaneously broken chiral symmetry, in line with earlier theoretical predictions. We present results on the field dependence of the order parameter and the critical exponents.
540 - Krishna Kumar , Kai Sun , 2015
We study the nearest neighbor $XXZ$ Heisenberg quantum antiferromagnet on the kagome lattice. Here we consider the effects of several perturbations: a) a chirality term, b) a Dzyaloshinski-Moriya term, and c) a ring-exchange type term on the bowties of the kagome lattice, and inquire if they can suppport chiral spin liquids as ground states. The method used to study these Hamiltonians is a flux attachment transformation that maps the spins on the lattice to fermions coupled to a Chern-Simons gauge field on the kagome lattice. This transformation requires us to consistently define a Chern-Simons term on the kagome lattice. We find that the chirality term leads to a chiral spin liquid even in the absence of an uniform magnetic field, with an effective spin Hall conductance of $sxy = frac{1}{2}$ in the regime of $XY$ anisotropy. The Dzyaloshinkii-Moriya term also leads a similar chiral spin liquid but only when this term is not too strong. An external magnetic field also has the possibility of giving rise to additional plateaus which also behave like chiral spin liquids in the $XY$ regime. Finally, we consider the effects of a ring-exchange term and find that, provided its coupling constant is large enough, it may trigger a phase transition into a chiral spin liquid by the spontaneous breaking of time-reversal invariance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا