No Arabic abstract
Ce(O,F)Sb(S,Se)2 single crystals were successfully grown using a CsCl/KCl flux method. The obtained crystals have a plate-like shape with the typical size of 1-2 mm and well-developed ab-plane, which enables X-ray single crystal structural analysis. The Ce(O,F)Sb(S,Se)2 crystallizes in a monoclinic space group, P21/m, with lattice parameters of a = 4.121(7) A, b = 4.109(7) A, c = 13.233(15) A, beta = 97.94(7) deg. It is composed of alternate stacking of Ce-(O,F) and Sb-SSe layers, and the Sb-SSe layer includes selective occupation of Se atoms in its in-plane site. The valence state of Ce is estimated to be Ce3+ by X-ray absorption fine spectroscopy analysis. The single crystals show an insulating behavior, and a magnetic ordering around 6 K.
Single crystals of La(O,F)BiSSe were successfully grown by a CsCl flux method. Single crystal X-ray structural analysis revealed that the crystal structure is isostructural with BiS$_2$- or BiSe$_2$-based compounds with space group $P4/nmm$ (lattice parameters $a$ = 4.1110(2) {AA}, $c$ = 13.6010(7) {AA}). However, the S atoms are selectively occupied at the apical site of the Bi-SSe pyramids in the superconducting layer. The single crystals show a superconducting transition at 4.2 K in the magnetic susceptibility and resistivity measurement. The superconducting anisotropic parameter is determined to be 34 from its upper critical magnetic field. The anisotropy is in the same range with that of other members of the La(O,F)BiCh$_2$ ($Ch$ = S, Se) family under ambient pressure.
F-substituted ROBiS2 (R = La, Ce, Nd) superconducting single crystals with different F concentration were grown successfully using CsCl/KCl flux. All the obtained single crystals had a plate-like shape with a well-developed ab-plane of 1-2 mm in size. The flux components of Cs, K, and Cl were not detected in the obtained single crystals by electron probe microanalysis. The grown single crystals of F-substituted LaOBiS2 and CeOBiS2 showed superconducting at about 3 K while the Tc of the F-substituted NdOBiS2 exhibited approximately 5 K. The superconducting anisotropy of the single crystals of F-substituted LaOBiS2 and NdOBiS2 was estimated to be 30-45 according to the effective mass model whereas those values were 13-21 for the F-substituted CeOBiS2 single crystals. The F-substituted CeOBiS2 single crystals exhibited magnetic order at about 7 K that apparently coexisted with superconductivity below around 3 K.
NbBiCh$_3$ (Ch = S, Se) misfit-layered superconducting single crystals were successfully grown using a CsCl/KCl flux for the first time. The obtained crystals had a well-developed habit parallel to the c-plane with a typical width of 1-2 mm and thickness of 10-40 um. The superconducting transition temperatures with zero resistivity of NbBiS$_3$ single crystals obtained from the nominal composition of Nb0.9Bi1.2S3 was 0.31 K, and that value of the NbBiSe$_3$ single crystals grown from the stoichiometry composition (NbBiSe$_3$) was 2.3 K. Sharp decreases in electric resistivity and magnetic susceptibility at approximately 3 K suggested a possible superconducting transition temperature of NbBiSe$_3$. The normal-state anisotropy values of grown NbBiS$_3$ and NbBiSe$_3$ single crystals were 2.2-2.4 and 1.5-1.6, respectively.
F-substituted LaOBiSe2 single crystals were grown using CsCl flux. The obtained single crystals showed a plate-like shape with a size of about 1.0 mm square. The c-axis lattice constant of the grown crystals was determined to be 14.114(3) {AA}. The superconducting critical temperature of the single crystal was approximately 3.5 K. The superconducting anisotropies were determined to be 49 and 24 using the upper critical field and the effective mass model, respectively.
The discovery of high thermoelectric performance in n-type polycrystalline Mg3(Sb,Bi)2 based Zintl compounds has ignited intensive research interest. However, some fundamental questions concerning the anisotropic transport properties and the origin of intrinsically low thermal conductivity are still elusive, requiring the investigation of single crystals. In this work, high-quality p-type Mg3Sb2 and Mg3Bi2 single crystals have been grown by using a self-flux method. The electrical resistivity r{ho} of Mg3Bi2 single crystal displays an anisotropy with r{ho} in-plane twice larger than out-of-plane. The low-temperature heat capacity and lattice thermal conductivity of Mg3Sb2 and Mg3Bi2 single crystals have been investigated by using the Debye-Callaway model, from which the existence of low-lying vibration mode could be concluded. Large Gruneisen parameters and strong anharmonicity are found responsible for the intrinsically low thermal conductivity. Moreover, grain boundary scattering does not contribute significantly to suppress the lattice thermal conductivity of polycrystalline Mg3Sb2. Our results provide insights into the intrinsic transport properties of Mg3X2 and could pave a way to realize enhanced thermoelectric performance in single-crystalline Mg3X2-based Zintl compounds.