Do you want to publish a course? Click here

Non-Hermitian formalism and nonlinear physics

147   0   0.0 ( 0 )
 Added by Ingrid Rotter
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The non-Hermitian formalism is used at present in many papers for the description of open quantum systems. A special language developed in this field of physics which makes it difficult for many physicists to follow and to understand the corresponding papers. We show that the characteristic features of the non-Hermitian formalism are nothing but nonlinearities that may appear in the equations when the Hamiltonian is non-Hermitian. They are related directly to singular points (called mostly exceptional points, EPs). At low level density, they may cause counterintuitive physical results which allow us to explain some puzzling experimental results. At high level density, they determine the dynamics of the system.



rate research

Read More

231 - C. Yuce 2021
Distant boundaries in linear non-Hermitian lattices can dramatically change energy eigenvalues and corresponding eigenstates in a nonlocal way. This effect is known as non-Hermitian skin effect (NHSE). Combining non-Hermitian skin effect with nonlinear effects can give rise to a host of novel phenomenas, which may be used for nonlinear structure designs. Here we study nonlinear non-Hermitian skin effect and explore nonlocal and substantial effects of edges on stationary nonlinear solutions. We show that fractal and continuum bands arise in a long lattice governed by a nonreciprocal discrete nonlinear Schrodinger equation. We show that stationary solutions are localized at the edge in the continuum band. We consider a non-Hermitian Ablowitz-Ladik model and show that nonlinear exceptional point disappears if the lattice is infinitely long.
154 - Ingrid Rotter 2017
Information on quantum systems can be obtained only when they are open (or opened) in relation to a certain environment. As a matter of fact, realistic open quantum systems appear in very different shape. We sketch the theoretical description of open quantum systems by means of a projection operator formalism elaborated many years ago, and applied by now to the description of different open quantum systems. The Hamiltonian describing the open quantum system is non-Hermitian. Most studied are the eigenvalues of the non-Hermitian Hamiltonian of many-particle systems embedded in one environment. We point to the unsolved problems of this method when applied to the description of realistic many-body systems. We then underline the role played by the eigenfunctions of the non-Hermitian Hamiltonian. Very interesting results originate from the fluctuations of the eigenfunctions in systems with gain and loss of excitons. They occur with an efficiency of nearly 100%. An example is the photosynthesis.
Exceptional points (EPs) are degeneracies of classical and quantum open systems, which are studied in many areas of physics including optics, optoelectronics, plasmonics, and condensed matter physics. In the semiclassical regime, open systems can be described by phenomenological effective non-Hermitian Hamiltonians (NHHs) capturing the effects of gain and loss in terms of imaginary fields. The EPs that characterize the spectra of such Hamiltonians (HEPs) describe the time evolution of a system without quantum jumps. It is well known that a full quantum treatment describing more generic dynamics must crucially take into account such quantum jumps. In a recent paper [F. Minganti $et$ $al.$, Phys. Rev. A $mathbf{100}$, $062131$ ($2019$)], we generalized the notion of EPs to the spectra of Liouvillian superoperators governing open system dynamics described by Lindblad master equations. Intriguingly, we found that in situations where a classical-to-quantum correspondence exists, the two types of dynamics can yield different EPs. In a recent experimental work [M. Naghiloo $et$ $al.$, Nat. Phys. $mathbf{15}$, $1232$ ($2019$)], it was shown that one can engineer a non-Hermitian Hamiltonian in the quantum limit by postselecting on certain quantum jump trajectories. This raises an interesting question concerning the relation between Hamiltonian and Lindbladian EPs, and quantum trajectories. We discuss these connections by introducing a hybrid-Liouvillian superoperator, capable of describing the passage from an NHH (when one postselects only those trajectories without quantum jumps) to a true Liouvillian including quantum jumps (without postselection). Beyond its fundamental interest, our approach allows to intuitively relate the effects of postselection and finite-efficiency detectors.
The non-triviality of Hilbert space geometries in non-Hermitian quantum systems sometimes blurs the underlying physics. We present a systematic study of the vielbein formalism which transforms the Hilbert spaces of non-Hermitian systems into the conventional ones, rendering the induced Hamiltonian to be Hermitian. In other words, any non-Hermitian Hamiltonian can be transformed into a Hermitian one without altering the physics. Thus, we show how to find a reference frame (corresponding to Einsteins quantum elevator) in which a non-Hermitian system, described by a non-trivial Hilbert space, reduces to a Hermitian system within the standard formalism of quantum mechanics for a Hilbert space.
Non-Hermitian systems with specific forms of Hamiltonians can exhibit novel phenomena. However, it is difficult to study their quantum thermodynamical properties. In particular, the calculation of work statistics can be challenging in non-Hermitian systems due to the change of state norm. To tackle this problem, we modify the two-point measurement method in Hermitian systems. The modified method can be applied to non-Hermitian systems which are Hermitian before and after the evolution. In Hermitian systems, our method is equivalent to the two-point measurement method. When the system is non-Hermitian, our results represent a projection of the statistics in a larger Hermitian system. As an example, we calculate the work statistics in a non-Hermitian Su-Schrieffer-Heeger model. Our results reveal several differences between the work statistics in non-Hermitian systems and the one in Hermitian systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا