No Arabic abstract
Distant boundaries in linear non-Hermitian lattices can dramatically change energy eigenvalues and corresponding eigenstates in a nonlocal way. This effect is known as non-Hermitian skin effect (NHSE). Combining non-Hermitian skin effect with nonlinear effects can give rise to a host of novel phenomenas, which may be used for nonlinear structure designs. Here we study nonlinear non-Hermitian skin effect and explore nonlocal and substantial effects of edges on stationary nonlinear solutions. We show that fractal and continuum bands arise in a long lattice governed by a nonreciprocal discrete nonlinear Schrodinger equation. We show that stationary solutions are localized at the edge in the continuum band. We consider a non-Hermitian Ablowitz-Ladik model and show that nonlinear exceptional point disappears if the lattice is infinitely long.
Hermitian theories play a major role in understanding the physics of most phenomena. It has been found only in the past decade that non-Hermiticity enables unprecedented effects such as exceptional points, spectral singularities and bulk Fermi arcs. Recent studies further show that non-Hermiticity can fundamentally change the topological band theory, leading to the non-Hermitian band topology and non-Hermitian skin effect, as confirmed in one-dimensional (1D) systems. However, in higher dimensions, these non-Hermitian effects remain unexplored in experiments. Here, we demonstrate the spin-polarized, higher-order non-Hermitian skin effect in two-dimensional (2D) acoustic metamaterials. Using a lattice of coupled whisper-gallery acoustic resonators, we realize a spinful 2D higher-order topological insulator (HOTI) where the spin-up and spin-down states are emulated by the anti-clockwise and clockwise modes, respectively. We find that the non-Hermiticity drives wave localizations toward opposite edge boundaries depending on the spin polarizations. More interestingly, for finite systems with both edge and corner boundaries, the higher-order non-Hermitian skin effect leads to wave localizations toward two corner boundaries for the bulk, edge and corner states in a spin-dependent manner. We further show that such a non-Hermitian skin effect enables rich wave manipulation through the loss configuration in each unit-cell. The reported spin-dependent, higher-order non-Hermitian skin effect reveals the interplay between higher-order topology and non-Hermiticity, which is further enriched by the spin degrees of freedom. This unveils a new horizon in the study of non-Hermitian physics and the design of non-Hermitian metamaterials.
Far from being limited to a trivial generalization of their Hermitian counterparts, non-Hermitian topological phases have gained widespread interest due to their unique properties. One of the most striking non-Hermitian phenomena is the skin effect, i.e., the localization of a macroscopic fraction of bulk eigenstates at a boundary, which underlies the breakdown of the bulk-edge correspondence. Here we investigate the emergence of the skin effect in magnetic insulating systems by developing a phenomenological approach to describing magnetic dissipation within a lattice model. Focusing on a spin-orbit-coupled van der Waals (vdW) ferromagnet with spin-nonconserving magnon-phonon interactions, we find that the magnetic skin effect emerges in an appropriate temperature regime. Our results suggest that the interference between Dzyaloshinskii-Moriya interaction (DMI) and nonlocal magnetic dissipation plays a key role in the accumulation of bulk states at the boundaries.
We demonstrate that crystal defects can act as a probe of intrinsic non-Hermitian topology. In particular, in point-gapped systems with periodic boundary conditions, a pair of dislocations may induce a non-Hermitian skin effect, where an extensive number of Hamiltonian eigenstates localize at only one of the two dislocations. An example of such a phase are two-dimensional systems exhibiting weak non-Hermitian topology, which are adiabatically related to a decoupled stack of one-dimensional Hatano-Nelson chains. Moreover, we show that strong two-dimensional point gap topology may also result in a dislocation response, even when there is no skin effect present with open boundary conditions. For both cases, we directly relate their bulk topology to a stable dislocation skin effect. Finally, and in stark contrast to the Hermitian case, we find that gapless non-Hermitian systems hosting bulk exceptional points also give rise to a well-localized dislocation response.
The recently discovered non-Hermitian skin effect (NHSE) manifests the breakdown of current classification of topological phases in energy-nonconservative systems, and necessitates the introduction of non-Hermitian band topology. So far, all NHSE observations are based on one type of non-Hermitian band topology, in which the complex energy spectrum winds along a closed loop. As recently characterized along a synthetic dimension on a photonic platform, non-Hermitian band topology can exhibit almost arbitrary windings in momentum space, but their actual phenomena in real physical systems remain unclear. Here, we report the experimental realization of NHSE in a one-dimensional (1D) non-reciprocal acoustic crystal. With direct acoustic measurement, we demonstrate that a twisted winding, whose topology consists of two oppositely oriented loops in contact rather than a single loop, will dramatically change the NHSE, following previous predictions of unique features such as the bipolar localization and the Bloch point for a Bloch-wave-like extended state. This work reveals previously unnoticed features of NHSE, and provides the first observation of physical phenomena originating from complex non-Hermitian winding topology.
Information on quantum systems can be obtained only when they are open (or opened) in relation to a certain environment. As a matter of fact, realistic open quantum systems appear in very different shape. We sketch the theoretical description of open quantum systems by means of a projection operator formalism elaborated many years ago, and applied by now to the description of different open quantum systems. The Hamiltonian describing the open quantum system is non-Hermitian. Most studied are the eigenvalues of the non-Hermitian Hamiltonian of many-particle systems embedded in one environment. We point to the unsolved problems of this method when applied to the description of realistic many-body systems. We then underline the role played by the eigenfunctions of the non-Hermitian Hamiltonian. Very interesting results originate from the fluctuations of the eigenfunctions in systems with gain and loss of excitons. They occur with an efficiency of nearly 100%. An example is the photosynthesis.