Do you want to publish a course? Click here

Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories

126   0   0.0 ( 0 )
 Added by Fabrizio Minganti
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exceptional points (EPs) are degeneracies of classical and quantum open systems, which are studied in many areas of physics including optics, optoelectronics, plasmonics, and condensed matter physics. In the semiclassical regime, open systems can be described by phenomenological effective non-Hermitian Hamiltonians (NHHs) capturing the effects of gain and loss in terms of imaginary fields. The EPs that characterize the spectra of such Hamiltonians (HEPs) describe the time evolution of a system without quantum jumps. It is well known that a full quantum treatment describing more generic dynamics must crucially take into account such quantum jumps. In a recent paper [F. Minganti $et$ $al.$, Phys. Rev. A $mathbf{100}$, $062131$ ($2019$)], we generalized the notion of EPs to the spectra of Liouvillian superoperators governing open system dynamics described by Lindblad master equations. Intriguingly, we found that in situations where a classical-to-quantum correspondence exists, the two types of dynamics can yield different EPs. In a recent experimental work [M. Naghiloo $et$ $al.$, Nat. Phys. $mathbf{15}$, $1232$ ($2019$)], it was shown that one can engineer a non-Hermitian Hamiltonian in the quantum limit by postselecting on certain quantum jump trajectories. This raises an interesting question concerning the relation between Hamiltonian and Lindbladian EPs, and quantum trajectories. We discuss these connections by introducing a hybrid-Liouvillian superoperator, capable of describing the passage from an NHH (when one postselects only those trajectories without quantum jumps) to a true Liouvillian including quantum jumps (without postselection). Beyond its fundamental interest, our approach allows to intuitively relate the effects of postselection and finite-efficiency detectors.



rate research

Read More

460 - Ci. Li , Zhi. Song 2015
We study quantum phase transitions in non-Hermitian XY and transverse-field Ising spin chains, in which the non-Hermiticity arises from the imaginary magnetic field. Analytical and numerical results show that at exceptional points, coalescing eigenstates in these models close to W, distant Bell and GHZ states, which can be steady states in dynamical preparation scheme proposed by T. D. Lee et. al. (Phys. Rev. Lett. 113, 250401 (2014)). Selecting proper initial states, numerical simulations demonstrate the time evolution process to the target states with high fidelity.
The non-triviality of Hilbert space geometries in non-Hermitian quantum systems sometimes blurs the underlying physics. We present a systematic study of the vielbein formalism which transforms the Hilbert spaces of non-Hermitian systems into the conventional ones, rendering the induced Hamiltonian to be Hermitian. In other words, any non-Hermitian Hamiltonian can be transformed into a Hermitian one without altering the physics. Thus, we show how to find a reference frame (corresponding to Einsteins quantum elevator) in which a non-Hermitian system, described by a non-trivial Hilbert space, reduces to a Hermitian system within the standard formalism of quantum mechanics for a Hilbert space.
We consider the description of open quantum systems with probability sinks (or sources) in terms of general non-Hermitian Hamiltonians.~Within such a framework, we study novel possible definitions of the quantum linear entropy as an indicator of the flow of information during the dynamics. Such linear entropy functionals are necessary in the case of a partially Wigner-transformed non-Hermitian Hamiltonian (which is typically useful within a mixed quantum-classical representation). Both the case of a system represented by a pure non-Hermitian Hamiltonian as well as that of the case of non-Hermitian dynamics in a classical bath are explicitly considered.
Over the past two decades, open systems that are described by a non-Hermitian Hamiltonian have become a subject of intense research. These systems encompass classical wave systems with balanced gain and loss, semiclassical models with mode selective losses, and minimal quantum systems, and the meteoric research on them has mainly focused on the wide range of novel functionalities they demonstrate. Here, we address the following questions: Does anything remain constant in the dynamics of such open systems? What are the consequences of such conserved quantities? Through spectral-decomposition method and explicit, recursive procedure, we obtain all conserved observables for general $mathcal{PT}$-symmetric systems. We then generalize the analysis to Hamiltonians with other antilinear symmetries, and discuss the consequences of conservation laws for open systems. We illustrate our findings with several physically motivated examples.
Engineered non-Hermitian systems featuring exceptional points can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, electronics, to atomic physics. Here we introduce and present non-Hermitian dynamics of coupled optical parametric oscillators (OPOs) arising from phase-sensitive amplification and de-amplification, and show their distinct advantages over conventional non-Hermitian systems relying on laser gain and loss. OPO-based non-Hermitian systems can benefit from the instantaneous nature of the parametric gain, noiseless phase-sensitive amplification, and rich quantum and classical nonlinear dynamics. We show that two coupled OPOs can exhibit spectral anti-PT symmetry and an exceptional point between its degenerate and non-degenerate operation regimes. To demonstrate the distinct potentials of the coupled OPO system compared to conventional non-Hermitian systems, we present higher-order exceptional points with two OPOs, tunable Floquet exceptional points in a reconfigurable dynamic non-Hermitian system, and generation of squeezed vacuum around exceptional points, all of which are not easy to realize in other non-Hermitian platforms. Our results show that coupled OPOs are an outstanding non-Hermitian setting with unprecedented opportunities in realizing nonlinear dynamical systems for enhanced sensing and quantum information processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا