Do you want to publish a course? Click here

A Steiner formula in the $L_p$ Brunn Minkowski theory

79   0   0.0 ( 0 )
 Added by Elisabeth Werner M
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We prove an analogue of the classical Steiner formula for the $L_p$ affine surface area of a Minkowski outer parallel body for any real parameters $p$. We show that the classical Steiner formula and the Steiner formula of Lutwaks dual Brunn Minkowski theory are special cases of this new Steiner formula. This new Steiner formula and its localiz



rate research

Read More

112 - Yuchi Wu 2020
In this paper, we prove a Prekopa-Leindler type inequality of the $L_p$ Brunn-Minkowski inequality. It extends an inequality proved by Das Gupta [8] and Klartag [16], and thus recovers the Prekopa-Leindler inequality. In addition, we prove a functional $L_p$ Minkowski inequality.
Henstock and Macbeath asked in 1953 whether the Brunn-Minkowski inequality can be generalized to nonabelian locally compact groups; questions in the same line were also asked by Hrushovski, McCrudden, and Tao. We obtain here such an inequality and prove that it is sharp for helix-free locally compact groups, which includes real linear algebraic groups, Nash groups, semisimple Lie groups with finite center, solvable Lie groups, etc. The proof follows an induction on dimension strategy; new ingredients include an understanding of the role played by maximal compact subgroups of Lie groups, a necessary modified form of the inequality which is also applicable to nonunimodular locally compact groups, and a proportionated averaging trick.
83 - Yong Huang , Jiakun Liu 2018
In this paper we prove the existence of complete, noncompact convex hypersurfaces whose $p$-curvature function is prescribed on a domain in the unit sphere. This problem is related to the solvability of Monge-Amp`ere type equations subject to certain boundary conditions depending on the value of $p$. The special case of $p=1$ was previously studied by Pogorelov and Chou-Wang. Here, we give some sufficient conditions for the solvability for general $p eq1$.
We present an alternative, short proof of a recent discrete version of the Brunn-Minkowski inequality due to Lehec and the second named author. Our proof also yields the four functions theorem of Ahlswede and Daykin as well as some new variants.
124 - Boaz A. Slomka 2020
We give an alternative proof for discrete Brunn-Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weight
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا