We give an alternative proof for discrete Brunn-Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weight
We present an alternative, short proof of a recent discrete version of the Brunn-Minkowski inequality due to Lehec and the second named author. Our proof also yields the four functions theorem of Ahlswede and Daykin as well as some new variants.
We prove the validity of the $p$-Brunn-Minkowski inequality for the intrinsic volume $V_k$, $k=2,dots, n-1$, of convex bodies in $mathbb{R}^n$, in a neighborhood of the unit ball, for $0le p<1$. We also prove that this inequality does not hold true on the entire class of convex bodies of $mathbb{R}^n$, when $p$ is sufficiently close to $0$.
In this paper, we prove a Prekopa-Leindler type inequality of the $L_p$ Brunn-Minkowski inequality. It extends an inequality proved by Das Gupta [8] and Klartag [16], and thus recovers the Prekopa-Leindler inequality. In addition, we prove a functional $L_p$ Minkowski inequality.
Henstock and Macbeath asked in 1953 whether the Brunn-Minkowski inequality can be generalized to nonabelian locally compact groups; questions in the same line were also asked by Hrushovski, McCrudden, and Tao. We obtain here such an inequality and prove that it is sharp for helix-free locally compact groups, which includes real linear algebraic groups, Nash groups, semisimple Lie groups with finite center, solvable Lie groups, etc. The proof follows an induction on dimension strategy; new ingredients include an understanding of the role played by maximal compact subgroups of Lie groups, a necessary modified form of the inequality which is also applicable to nonunimodular locally compact groups, and a proportionated averaging trick.
We prove that on an essentially non-branching $mathrm{MCP}(K,N)$ space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.