Do you want to publish a course? Click here

A Prekopa-Leindler type inequality of the $L_p$ Brunn-Minkowski inequality

113   0   0.0 ( 0 )
 Added by Yuchi Wu
 Publication date 2020
  fields
and research's language is English
 Authors Yuchi Wu




Ask ChatGPT about the research

In this paper, we prove a Prekopa-Leindler type inequality of the $L_p$ Brunn-Minkowski inequality. It extends an inequality proved by Das Gupta [8] and Klartag [16], and thus recovers the Prekopa-Leindler inequality. In addition, we prove a functional $L_p$ Minkowski inequality.



rate research

Read More

Henstock and Macbeath asked in 1953 whether the Brunn-Minkowski inequality can be generalized to nonabelian locally compact groups; questions in the same line were also asked by Hrushovski, McCrudden, and Tao. We obtain here such an inequality and prove that it is sharp for helix-free locally compact groups, which includes real linear algebraic groups, Nash groups, semisimple Lie groups with finite center, solvable Lie groups, etc. The proof follows an induction on dimension strategy; new ingredients include an understanding of the role played by maximal compact subgroups of Lie groups, a necessary modified form of the inequality which is also applicable to nonunimodular locally compact groups, and a proportionated averaging trick.
We give a short, self-contained proof of two key results from a paper of four of the authors. The first is a kind of weighted discrete Prekopa-Leindler inequality. This is then applied to show that if $A, B subseteq mathbb{Z}^d$ are finite sets and $U$ is a subset of a quasicube then $|A + B + U| geq |A|^{1/2} |B|^{1/2} |U|$. This result is a key ingredient in forthcoming work of the fifth author and Palvolgyi on the sum-product phenomenon.
We present an alternative, short proof of a recent discrete version of the Brunn-Minkowski inequality due to Lehec and the second named author. Our proof also yields the four functions theorem of Ahlswede and Daykin as well as some new variants.
We prove an analogue of the classical Steiner formula for the $L_p$ affine surface area of a Minkowski outer parallel body for any real parameters $p$. We show that the classical Steiner formula and the Steiner formula of Lutwaks dual Brunn Minkowski theory are special cases of this new Steiner formula. This new Steiner formula and its localiz
124 - Boaz A. Slomka 2020
We give an alternative proof for discrete Brunn-Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weight
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا