Do you want to publish a course? Click here

SITELLE: An Imaging Fourier Transform Spectrometer for the Canada-France-Hawaii Telescope

77   0   0.0 ( 0 )
 Added by Laurent Drissen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an overview of SITELLE, an Imaging Fourier Transform Spectrometer (iFTS) available at the 3.6-meter Canada-France-Hawaii Telescope. SITELLE is a Michelson-type interferometer able to reconstruct the spectrum of every light source within its 11 field of view in filter-selected bands of the visible (350 to 900 nm). The spectral resolution can be adjusted up to R = 10 000 and the spatial resolution is seeing-limited and sampled at 0.32 arcsec per pixel. We describe the design of the instrument as well as the data reduction and analysis process. To illustrate SITELLEs capabilities, we present some of the data obtained during and since the August 2015 commissioning run. In particular, we demonstrate its ability to separate the components of the [OII] $lambdalambda$ 3726,29 doublet in Orion and to reach R = 9500 around H-alpha; to detect diffuse emission at a level of 4 x 10e-17 erg/cm2/s/arcsec2; to obtain integrated spectra of stellar absorption lines in galaxies despite the well-known multiplex disadvantage of the iFTS; and to detect emission-line galaxies at different redshifts.



rate research

Read More

118 - L. Drissen , A. Alarie , T. Martin 2012
We present new data obtained with SpIOMM, the imaging Fourier transform spectrometer attached to the 1.6-m telescope of the Observatoire du Mont-Megantic in Quebec. Recent technical and data reduction improvements have significantly increased SpIOMMs capabilities to observe fainter objects or weaker nebular lines, as well as continuum sources and absorption lines, and to increase its modulation efficiency in the near ultraviolet. To illustrate these improvements, we present data on the supernova remnant Cas A, planetary nebulae M27 and M97, the Wolf-Rayet ring nebula M1-67, spiral galaxies M63 and NGC 3344, as well as the interacting pair of galaxies Arp 84.
SPIRou is a near-IR echelle spectropolarimeter and high-precision velocimeter under construction as a next-generation instrument for the Canada-France-Hawaii-Telescope. It is designed to cover a very wide simultaneous near-IR spectral range (0.98-2.35 {mu}m) at a resolving power of 73.5K, providing unpolarized and polarized spectra of low-mass stars at a radial velocity (RV) precision of 1m/s. The main science goals of SPIRou are the detection of habitable super-Earths around low-mass stars and the study of how critically magnetic fields impact star / planet formation. Following a successful final design review in Spring 2014, SPIRou is now under construction and is scheduled to see first light in late 2017. We present an overview of key aspects of SPIRous optical and mechanical design.
We present data products from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). CFHTLenS is based on the Wide component of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). It encompasses 154 deg^2 of deep, optical, high-quality, sub-arcsecond imaging data in the five optical filters u^*griz. The article presents our data processing of the complete CFHTLenS data set. We were able to obtain a data set with very good image quality and high-quality astrometric and photometric calibration. Our external astrometric accuracy is between 60-70 mas with respect to SDSS data and the internal alignment in all filters is around 30 mas. Our average photometric calibration shows a dispersion on the order of 0.01 to 0.03 mag for griz and about 0.04 mag for u^* with respect to SDSS sources down to i <= 21. In the spirit of the CFHTLS all our data products are released to the astronomical community via the Canadian Astronomy Data Centre. We give a description and how-to manuals of the public products which include image pixel data, source catalogues with photometric redshift estimates and all relevant quantities to perform weak lensing studies.
We leverage state-of-the-art machine learning methods and a decades worth of archival data from the Canada-France-Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features and observed IQ for CFHTs wide field camera, MegaCam. Our contributions are several-fold. First, we collect, collate and reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions (PDFs) of IQ, and achieve a mean absolute error of $sim0.07$ for the predicted medians. Third, we explore data-driven actuation of the 12 dome ``vents, installed in 2013-14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric uncertainties in conjunction with probabilistic generative modeling to identify candidate vent adjustments that are in-distribution (ID) and, for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed SNR. On average, the reduction is $sim15%$. Finally, we rank sensor data features by Shapley values to identify the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can forecast optimal observatory operating parameters for optimization of IQ. Such forecasts can then be fed into scheduling protocols and predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations and maintenance by the time CFHTs successor, the Maunakea Spectroscopic Explorer (MSE), is installed in the next decade.
The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We describe the calibration process of the FIS-FTS and discuss its accuracy and reliability. The calibration is based on the observational data of bright astronomical sources as well as two instrumental sources. We have compared the FIS-FTS spectra with the spectra obtained from the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO) having a similar spectral coverage. The present calibration method accurately reproduces the spectra of several solar system objects having a reliable spectral model. Under this condition the relative uncertainty of the calibration of the continuum is estimated to be $pm$ 15% for SW, $pm$ 10% for 70-85 cm^(-1) of LW, and $pm$ 20% for 60-70 cm^(-1) of LW; and the absolute uncertainty is estimated to be +35/-55% for SW, +35/-55% for 70-85 cm^(-1) of LW, and +40/-60% for 60-70 cm^(-1) of LW. These values are confirmed by comparison with theoretical models and previous observations by the ISO/LWS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا