No Arabic abstract
SPIRou is a near-IR echelle spectropolarimeter and high-precision velocimeter under construction as a next-generation instrument for the Canada-France-Hawaii-Telescope. It is designed to cover a very wide simultaneous near-IR spectral range (0.98-2.35 {mu}m) at a resolving power of 73.5K, providing unpolarized and polarized spectra of low-mass stars at a radial velocity (RV) precision of 1m/s. The main science goals of SPIRou are the detection of habitable super-Earths around low-mass stars and the study of how critically magnetic fields impact star / planet formation. Following a successful final design review in Spring 2014, SPIRou is now under construction and is scheduled to see first light in late 2017. We present an overview of key aspects of SPIRous optical and mechanical design.
SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter for the Canada-France-Hawaii Telescope (CFHT), that will focus on two forefront science topics, (i) the quest for habitable Earth-like planets around nearby M stars, and (ii) the study of low-mass star/planet formation in the presence of magnetic fields. SPIRou will also efficiently tackle many key programmes beyond these two main goals, from weather patterns on brown dwarfs to Solar-System planet and exoplanet atmospheres. SPIRou will cover a wide spectral domain in a single exposure (0.98-2.44um at a resolving power of 70K, yielding unpolarized and polarized spectra of low-mass stars with a 15% average throughput at a radial velocity (RV) precision of 1 m/s. It consists of a Cassegrain unit mounted at the Cassegrain focus of CFHT and featuring an achromatic polarimeter, coupled to a cryogenic spectrograph cooled down at 80K through a fluoride fiber link. SPIRou is currently integrated at IRAP/OMP and will be mounted at CFHT in 2017 Q4 for a first light scheduled in late 2017. Science operation is predicted to begin in 2018 S2, allowing many fruitful synergies with major ground and space instruments such as the JWST, TESS, ALMA and later-on PLATO and the ELT.
SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter proposed as a new-generation instrument for CFHT. SPIRou aims in particular at becoming world-leader on two forefront science topics, (i) the quest for habitable Earth-like planets around very- low-mass stars, and (ii) the study of low-mass star and planet formation in the presence of magnetic fields. In addition to these two main goals, SPIRou will be able to tackle many key programs, from weather patterns on brown dwarf to solar-system planet atmospheres, to dynamo processes in fully-convective bodies and planet habitability. The science programs that SPIRou proposes to tackle are forefront (identified as first priorities by most research agencies worldwide), ambitious (competitive and complementary with science programs carried out on much larger facilities, such as ALMA and JWST) and timely (ideally phased with complementary space missions like TESS and CHEOPS). SPIRou is designed to carry out its science mission with maximum efficiency and optimum precision. More specifically, SPIRou will be able to cover a very wide single-shot nIR spectral domain (0.98-2.35 mu m) at a resolving power of 73.5K, providing unpolarized and polarized spectra of low-mass stars with a ~15% average throughput and a radial velocity (RV) precision of 1 m/s.
We present an overview of SITELLE, an Imaging Fourier Transform Spectrometer (iFTS) available at the 3.6-meter Canada-France-Hawaii Telescope. SITELLE is a Michelson-type interferometer able to reconstruct the spectrum of every light source within its 11 field of view in filter-selected bands of the visible (350 to 900 nm). The spectral resolution can be adjusted up to R = 10 000 and the spatial resolution is seeing-limited and sampled at 0.32 arcsec per pixel. We describe the design of the instrument as well as the data reduction and analysis process. To illustrate SITELLEs capabilities, we present some of the data obtained during and since the August 2015 commissioning run. In particular, we demonstrate its ability to separate the components of the [OII] $lambdalambda$ 3726,29 doublet in Orion and to reach R = 9500 around H-alpha; to detect diffuse emission at a level of 4 x 10e-17 erg/cm2/s/arcsec2; to obtain integrated spectra of stellar absorption lines in galaxies despite the well-known multiplex disadvantage of the iFTS; and to detect emission-line galaxies at different redshifts.
We leverage state-of-the-art machine learning methods and a decades worth of archival data from the Canada-France-Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features and observed IQ for CFHTs wide field camera, MegaCam. Our contributions are several-fold. First, we collect, collate and reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions (PDFs) of IQ, and achieve a mean absolute error of $sim0.07$ for the predicted medians. Third, we explore data-driven actuation of the 12 dome ``vents, installed in 2013-14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric uncertainties in conjunction with probabilistic generative modeling to identify candidate vent adjustments that are in-distribution (ID) and, for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed SNR. On average, the reduction is $sim15%$. Finally, we rank sensor data features by Shapley values to identify the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can forecast optimal observatory operating parameters for optimization of IQ. Such forecasts can then be fed into scheduling protocols and predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations and maintenance by the time CFHTs successor, the Maunakea Spectroscopic Explorer (MSE), is installed in the next decade.
SPIRou is a near-infrared spectropolarimeter and high-precision radial-velocity instrument, to be mounted on the 3.6m Canada-France-Hawaii telescope ontop Maunakea and to be offered to the CFHT community from 2018. It focuses on two main scientific objectives : (i) the search and study of Earth-like planets around M dwarfs, especially in their habitable zone and (ii) the study of stellar and planetary formation in the presence of stellar magnetic field. The SPIRou characteristics (complete coverage of the near infrared wavelengths, high resolution, high stability and efficiency, polarimetry) also allow many other programs, e.g., magnetic fields and atmospheres of M dwarfs and brown dwarfs, star-planet interactions, formation and characterization of massive stars, dynamics and atmospheric chemistry of planets in the solar system.