Do you want to publish a course? Click here

Calibration of the AKARI Far-Infrared Imaging Fourier Transform Spectrometer

135   0   0.0 ( 0 )
 Added by Noriko Murakami
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We describe the calibration process of the FIS-FTS and discuss its accuracy and reliability. The calibration is based on the observational data of bright astronomical sources as well as two instrumental sources. We have compared the FIS-FTS spectra with the spectra obtained from the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO) having a similar spectral coverage. The present calibration method accurately reproduces the spectra of several solar system objects having a reliable spectral model. Under this condition the relative uncertainty of the calibration of the continuum is estimated to be $pm$ 15% for SW, $pm$ 10% for 70-85 cm^(-1) of LW, and $pm$ 20% for 60-70 cm^(-1) of LW; and the absolute uncertainty is estimated to be +35/-55% for SW, +35/-55% for 70-85 cm^(-1) of LW, and +40/-60% for 60-70 cm^(-1) of LW. These values are confirmed by comparison with theoretical models and previous observations by the ISO/LWS.



rate research

Read More

We have developed an imaging Fourier transform spectrometer (FTS) for space-based far-infrared astronomical observations. The FTS employs a newly developed photoconductive detector arrays with a capacitive trans-impedance amplifier, which makes the FTS a completely unique instrument. The FTS was installed as a function of the far-infrared instrument (FIS: Far-Infrared Surveyor) on the Japanese astronomical satellite, AKARI, which was launched on February 21, 2006 (UT) from the Uchinoura Space Center. The FIS-FTS had been operated for more than one year before liquid helium ran out on August 26, 2007. The FIS-FTS was operated nearly six hundreds times, which corresponds to more than one hundred hours of astronomical observations and almost the same amount of time for calibrations. As expected from laboratory measurements, the FIS-FTS performed well and has produced a large set of astronomical data for valuable objects. Meanwhile, it becomes clear that the detector transient effect is a considerable factor for FTSs with photoconductive detectors. In this paper, the instrumentation of the FIS-FTS and interesting phenomena related to FTS using photoconductive detectors are described, and future applications of this kind of FTS system are discussed.
We present an initial analysis of the properties of the all-sky image obtained by the Far-Infrared Surveyor (FIS) onboard the AKARI satellite, at 65~$mu$m (N60), 90~$mu$m (WIDE-S), 140~$mu$m (WIDE-L),and 160~$mu$m (N160). Absolute flux calibration was determined by comparing the data with the COBE/DIRBE data sets, and the intensity range was as wide as from a few MJy~sr$^{-1}$ to $>$1~GJy~sr$^{-1}$. The uncertainties are considered to be the standard deviations with respect to the DIRBE data, and they are less than 10% for intensities above 10, 3, 25, and 26~MJy~sr$^{-1}$ at the N60, WIDE-S, WIDE-L, and N160 bands, respectively. The characteristics of point sources in the image were also determined by stacking maps centred on photometric standard stars. The full width at half maxima of the point spread functions (PSFs) were 63$$, 78$$, and 88$$ at the N60, WIDE-S, and WIDE-L bands, respectively. The PSF at the N160 band was not obtained due to the sensitivity, but it is thought to be the same as that of the WIDE-L one.
We describe an update to the Herschel-SPIRE Fourier-Transform Spectrometer (FTS) calibration for extended sources, which incorporates a correction for the frequency-dependent far-field feedhorn efficiency, $eta_mathrm{FF}$. This significant correction affects all FTS extended-source calibrated spectra in sparse or mapping mode, regardless of the spectral resolution. Line fluxes and continuum levels are underestimated by factors of 1.3-2 in the Spectrometer Long-Wavelength band (SLW, 447-1018 GHz; 671-294 $mu$m) and 1.4-1.5 in the Spectrometer Short-Wavelength band (SSW, 944-1568 GHz; 318-191 $mu$m). The correction was implemented in the FTS pipeline version 14.1 and has also been described in the SPIRE Handbook since Feb 2017. Studies based on extended-source calibrated spectra produced prior to this pipeline version should be critically reconsidered using the current products available in the Herschel Science Archive. Once the extended-source calibrated spectra are corrected for $eta_mathrm{FF}$, the synthetic photometry and the broadband intensities from SPIRE photometer maps agree within 2-4% -- similar levels to the comparison of point-source calibrated spectra and photometry from point-source calibrated maps. The two calibration schemes for the FTS are now self-consistent: the conversion between the corrected extended-source and point-source calibrated spectra can be achieved with the beam solid angle and a gain correction that accounts for the diffraction loss.
We present an overview of SITELLE, an Imaging Fourier Transform Spectrometer (iFTS) available at the 3.6-meter Canada-France-Hawaii Telescope. SITELLE is a Michelson-type interferometer able to reconstruct the spectrum of every light source within its 11 field of view in filter-selected bands of the visible (350 to 900 nm). The spectral resolution can be adjusted up to R = 10 000 and the spatial resolution is seeing-limited and sampled at 0.32 arcsec per pixel. We describe the design of the instrument as well as the data reduction and analysis process. To illustrate SITELLEs capabilities, we present some of the data obtained during and since the August 2015 commissioning run. In particular, we demonstrate its ability to separate the components of the [OII] $lambdalambda$ 3726,29 doublet in Orion and to reach R = 9500 around H-alpha; to detect diffuse emission at a level of 4 x 10e-17 erg/cm2/s/arcsec2; to obtain integrated spectra of stellar absorption lines in galaxies despite the well-known multiplex disadvantage of the iFTS; and to detect emission-line galaxies at different redshifts.
280 - David A. Naylor 2013
The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach-Zehnder interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the Mach-Zehnder design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا