Do you want to publish a course? Click here

Unique Information and Secret Key Agreement

97   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The partial information decomposition (PID) is a promising framework for decomposing a joint random variable into the amount of influence each source variable Xi has on a target variable Y, relative to the other sources. For two sources, influence breaks down into the information that both X0 and X1 redundantly share with Y, what X0 uniquely shares with Y, what X1 uniquely shares with Y, and finally what X0 and X1 synergistically share with Y. Unfortunately, considerable disagreement has arisen as to how these four components should be quantified. Drawing from cryptography, we consider the secret key agreement rate as an operational method of quantifying unique informations. Secret key agreement rate comes in several forms, depending upon which parties are permitted to communicate. We demonstrate that three of these four forms are inconsistent with the PID. The remaining form implies certain interpretations as to the PIDs meaning---interpretations not present in PIDs definition but that, we argue, need to be explicit. These reveal an inconsistency between third-order connected information, two-way secret key agreement rate, and synergy. Similar difficulties arise with a popular PID measure in light the results here as well as from a maximum entropy viewpoint. We close by reviewing the challenges facing the PID.



rate research

Read More

Recently, the partial information decomposition emerged as a promising framework for identifying the meaningful components of the information contained in a joint distribution. Its adoption and practical application, however, have been stymied by the lack of a generally-accepted method of quantifying its components. Here, we briefly discuss the bivariate (two-source) partial information decomposition and two implicitly directional interpretations used to intuitively motivate alternative component definitions. Drawing parallels with secret key agreement rates from information-theoretic cryptography, we demonstrate that these intuitions are mutually incompatible and suggest that this underlies the persistence of competing definitions and interpretations. Having highlighted this hitherto unacknowledged issue, we outline several possible solutions.
The unique information ($UI$) is an information measure that quantifies a deviation from the Blackwell order. We have recently shown that this quantity is an upper bound on the one-way secret key rate. In this paper, we prove a triangle inequality for the $UI$, which implies that the $UI$ is never greater than one of the best known upper bounds on the two-way secret key rate. We conjecture that the $UI$ lower bounds the two-way rate and discuss implications of the conjecture.
We study the rate of change of the multivariate mutual information among a set of random variables when some common randomness is added to or removed from a subset. This is formulated more precisely as two new multiterminal secret key agreement problems which ask how one can increase the secrecy capacity efficiently by adding common randomness to a small subset of users, and how one can simplify the source model by removing redundant common randomness that does not contribute to the secrecy capacity. The combinatorial structure has been clarified along with some meaningful open problems.
A source model of key sharing between three users is considered in which each pair of them wishes to agree on a secret key hidden from the remaining user. There are rate-limited public channels for communications between the users. We give an inner bound on the secret key capacity region in this framework. Moreover, we investigate a practical setup in which localization information of the users as the correlated observations are exploited to share pairwise keys between the users. The inner and outer bounds of the key capacity region are analyzed in this setup for the case of i.i.d. Gaussian observations.
A new scenario for generating a secret key and two private keys among three Terminals in the presence of an external eavesdropper is considered. Terminals 1, 2 and 3 intend to share a common secret key concealed from the external eavesdropper (Terminal 4) and simultaneously, each of Terminals 1 and 2 intends to share a private key with Terminal 3 while keeping it concealed from each other and from Terminal 4. All four Terminals observe i.i.d. outputs of correlated sources and there is a public channel from Terminal 3 to Terminals 1 and 2. An inner bound of the secret key-private keys capacity region is derived and the single letter capacity regions are obtained for some special cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا