We study the rate of change of the multivariate mutual information among a set of random variables when some common randomness is added to or removed from a subset. This is formulated more precisely as two new multiterminal secret key agreement problems which ask how one can increase the secrecy capacity efficiently by adding common randomness to a small subset of users, and how one can simplify the source model by removing redundant common randomness that does not contribute to the secrecy capacity. The combinatorial structure has been clarified along with some meaningful open problems.
The partial information decomposition (PID) is a promising framework for decomposing a joint random variable into the amount of influence each source variable Xi has on a target variable Y, relative to the other sources. For two sources, influence breaks down into the information that both X0 and X1 redundantly share with Y, what X0 uniquely shares with Y, what X1 uniquely shares with Y, and finally what X0 and X1 synergistically share with Y. Unfortunately, considerable disagreement has arisen as to how these four components should be quantified. Drawing from cryptography, we consider the secret key agreement rate as an operational method of quantifying unique informations. Secret key agreement rate comes in several forms, depending upon which parties are permitted to communicate. We demonstrate that three of these four forms are inconsistent with the PID. The remaining form implies certain interpretations as to the PIDs meaning---interpretations not present in PIDs definition but that, we argue, need to be explicit. These reveal an inconsistency between third-order connected information, two-way secret key agreement rate, and synergy. Similar difficulties arise with a popular PID measure in light the results here as well as from a maximum entropy viewpoint. We close by reviewing the challenges facing the PID.
A source model of key sharing between three users is considered in which each pair of them wishes to agree on a secret key hidden from the remaining user. There are rate-limited public channels for communications between the users. We give an inner bound on the secret key capacity region in this framework. Moreover, we investigate a practical setup in which localization information of the users as the correlated observations are exploited to share pairwise keys between the users. The inner and outer bounds of the key capacity region are analyzed in this setup for the case of i.i.d. Gaussian observations.
In this work, we consider a complete covert communication system, which includes the source-model of a stealthy secret key generation (SSKG) as the first phase. The generated key will be used for the covert communication in the second phase of the current round and also in the first phase of the next round. We investigate the stealthy SK rate performance of the first phase. The derived results show that the SK capacity lower and upper bounds of the source-model SKG are not affected by the additional stealth constraint. This result implies that we can attain the SSKG capacity for free when the sequences observed by the three terminals Alice ($X^n$), Bob ($Y^n$) and Willie ($Z^n$) follow a Markov chain relationship, i.e., $X^n-Y^n-Z^n$. We then prove that the sufficient condition to attain both, the SK capacity as well as the SSK capacity, can be relaxed from physical to stochastic degradedness. In order to underline the practical relevance, we also derive a sufficient condition to attain the degradedness by the usual stochastic order for Maurers fast fading Gaussian (satellite) model for the source of common randomness.
Recently, the partial information decomposition emerged as a promising framework for identifying the meaningful components of the information contained in a joint distribution. Its adoption and practical application, however, have been stymied by the lack of a generally-accepted method of quantifying its components. Here, we briefly discuss the bivariate (two-source) partial information decomposition and two implicitly directional interpretations used to intuitively motivate alternative component definitions. Drawing parallels with secret key agreement rates from information-theoretic cryptography, we demonstrate that these intuitions are mutually incompatible and suggest that this underlies the persistence of competing definitions and interpretations. Having highlighted this hitherto unacknowledged issue, we outline several possible solutions.
This paper investigates the secret key authentication capacity region. Specifically, the focus is on a model where a source must transmit information over an adversary controlled channel where the adversary, prior to the sources transmission, decides whether or not to replace the destinations observation with an arbitrary one of their choosing (done in hopes of having the destination accept a false message). To combat the adversary, the source and destination share a secret key which they may use to guarantee authenticated communications. The secret key authentication capacity region here is then defined as the region of jointly achievable message rate, authentication rate, and key consumption rate (i.e., how many bits of secret key are needed). This is the first of a two part study, with the parts differing in how the authentication rate is measured. In this first study the authenticated rate is measured by the traditional metric of the maximum expected probability of false authentication. For this metric, we provide an inner bound which improves on those existing in the literature. This is achieved by adopting and merging different classical techniques in novel ways. Within these classical techniques, one technique derives authentication capability directly from the noisy communications channel, and the other technique derives its authentication capability directly from obscuring the source.