A new scenario for generating a secret key and two private keys among three Terminals in the presence of an external eavesdropper is considered. Terminals 1, 2 and 3 intend to share a common secret key concealed from the external eavesdropper (Terminal 4) and simultaneously, each of Terminals 1 and 2 intends to share a private key with Terminal 3 while keeping it concealed from each other and from Terminal 4. All four Terminals observe i.i.d. outputs of correlated sources and there is a public channel from Terminal 3 to Terminals 1 and 2. An inner bound of the secret key-private keys capacity region is derived and the single letter capacity regions are obtained for some special cases.
The partial information decomposition (PID) is a promising framework for decomposing a joint random variable into the amount of influence each source variable Xi has on a target variable Y, relative to the other sources. For two sources, influence breaks down into the information that both X0 and X1 redundantly share with Y, what X0 uniquely shares with Y, what X1 uniquely shares with Y, and finally what X0 and X1 synergistically share with Y. Unfortunately, considerable disagreement has arisen as to how these four components should be quantified. Drawing from cryptography, we consider the secret key agreement rate as an operational method of quantifying unique informations. Secret key agreement rate comes in several forms, depending upon which parties are permitted to communicate. We demonstrate that three of these four forms are inconsistent with the PID. The remaining form implies certain interpretations as to the PIDs meaning---interpretations not present in PIDs definition but that, we argue, need to be explicit. These reveal an inconsistency between third-order connected information, two-way secret key agreement rate, and synergy. Similar difficulties arise with a popular PID measure in light the results here as well as from a maximum entropy viewpoint. We close by reviewing the challenges facing the PID.
Recently, the partial information decomposition emerged as a promising framework for identifying the meaningful components of the information contained in a joint distribution. Its adoption and practical application, however, have been stymied by the lack of a generally-accepted method of quantifying its components. Here, we briefly discuss the bivariate (two-source) partial information decomposition and two implicitly directional interpretations used to intuitively motivate alternative component definitions. Drawing parallels with secret key agreement rates from information-theoretic cryptography, we demonstrate that these intuitions are mutually incompatible and suggest that this underlies the persistence of competing definitions and interpretations. Having highlighted this hitherto unacknowledged issue, we outline several possible solutions.
We study the rate of change of the multivariate mutual information among a set of random variables when some common randomness is added to or removed from a subset. This is formulated more precisely as two new multiterminal secret key agreement problems which ask how one can increase the secrecy capacity efficiently by adding common randomness to a small subset of users, and how one can simplify the source model by removing redundant common randomness that does not contribute to the secrecy capacity. The combinatorial structure has been clarified along with some meaningful open problems.
A secret can be an encrypted message or a private key to decrypt the ciphertext. One of the main issues in cryptography is keeping this secret safe. Entrusting secret to one person or saving it in a computer can conclude betrayal of the person or destruction of that device. For solving this issue, secret sharing can be used between some individuals which a coalition of a specific number of them can only get access to the secret. In practical issues, some of the members have more power and by a coalition of fewer of them, they should know about the secret. In a bank, for example, president and deputy can have a union with two members by each other. In this paper, by using Polar codes secret sharing has been studied and a secret sharing scheme based on Polar codes has been introduced. Information needed for any member would be sent by the channel which Polar codes are constructed by it.
Cell association scheme determines which base station (BS) and mobile user (MU) should be associated with and also plays a significant role in determining the average data rate a MU can achieve in heterogeneous networks. However, the explosion of digital devices and the scarcity of spectra collectively force us to carefully re-design cell association scheme which was kind of taken for granted before. To address this, we develop a new cell association scheme in heterogeneous networks based on joint consideration of the signal-to-interference-plus-noise ratio (SINR) which a MU experiences and the traffic load of candidate BSs1. MUs and BSs in each tier are modeled as several independent Poisson point processes (PPPs) and all channels experience independently and identically distributed ( i.i.d.) Rayleigh fading. Data rate ratio and traffic load ratio distributions are derived to obtain the tier association probability and the average ergodic MU data rate. Through numerical results, We find that our proposed cell association scheme outperforms cell range expansion (CRE) association scheme. Moreover, results indicate that allocating small sized and high-density BSs will improve spectral efficiency if using our proposed cell association scheme in heterogeneous networks.