Do you want to publish a course? Click here

Observation of Mollow triplet with metastability exchange collisions in 3He atoms

248   0   0.0 ( 0 )
 Added by Yuanzhi Zhan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dressed states of 3He atoms and experimentally observe the Mollow triplet (MT) induced with an ultra-low-frequency (ULF) oscillating magnetic field as low as 4 Hz. The ULF MT signatures from the ground states of 3He atoms are transferred to the metastable states by metastability-exchange collisions (MECs) and measured optically, which demonstrates 2 s coherence time in the dressed ground states. The result shows the possibility of ULF magnetic field amplitude measurement and a new scheme for optical frequency modulation.



rate research

Read More

187 - Guoqing Wang , Yi-Xiang Liu , 2020
The Mollow triplet is a fundamental signature of quantum optics, and has been observed in numerous quantum systems. Although it arises in the strong driving regime of the quantized field, where the atoms undergo coherent oscillations, it can be typically analyzed within the rotating wave approximation. Here we report the first observation of high-order effects in the Mollow triplet structure due to strong driving. In experiments, we explore the regime beyond the rotating wave approximation using concatenated continuous driving that has less stringent requirements on the driving field power. We are then able to reveal additional transition frequencies, shifts in energy levels, and corrections to the transition amplitudes. In particular, we find that these amplitudes are more sensitive to high-order effects than the frequency shifts, and that they still require an accurate determination in order to achieve high-fidelity quantum control. The experimental results are validated by the Floquet theory, which enables the precise numerical simulation of the evolution and further provides an analytical form for an effective Hamiltonian that approximately predicts the spin dynamics beyond the rotating wave approximation.
We experimentally observed the Mollow quintuplet (MQ) in F=3/2 hyperfine structure state of 3He atoms. The metastability-exchange collisions (MECs) transfer the Mollow Triplet (MT) from the ground states of 3He atoms to the metastable states, and the MQ is demonstrated by four Zeeman levels of F=3/2 hyperfine states with linearly polarized light. The similar effect also achieves in the mixture cell of 3He and 4He.
We analyze a photon transport through an 1D open waveguide side coupled to the $N$-photon microwave cavity with embedded artificial two- level atom (qubit). The qubit state is probed by a weak signal at the fundamental frequency of the waveguide. Within the formalism of projection operators and non-Hermitian Hamiltonian approach we develop a one-photon approximation scheme to obtain the photon wavefunction which allows for the calculation of the probability amplitudes of the spontaneous transitions between the levels of two Rabi doublets in $N$- photon cavity. We obtain analytic expressions for the transmission and reflection factors of the microwave signal through a waveguide, which contain the information of the qubit parameters. We show that for small number of cavity photons the Mollow spectrum consists of four spectral lines which is a direct manifestation of quantum nature of light. The results obtained in the paper are of general nature and can be applied to any type of qubits. The specific properties of the qubit are only encoded in the two parameters: the energy $Omega$ of the qubit and its coupling $lambda$ to the cavity photons.
Resonant excitation of solid state quantum emitters has the potential to deterministically excite a localized exciton while ensuring a maximally coherent emission. In this work, we demonstrate the coherent coupling of an exciton localized in a lithographically positioned, site-controlled semiconductor quantum dot to an external resonant laser field. For strong continuous-wave driving we observe the characteristic Mollow triplet and analyze the Rabi splitting and sideband widths as a function of driving strength and temperature. The sideband widths increase linearly with temperature and the square of the driving strength, which we explain via coupling of the exciton to longitudinal acoustic phonons. We also find an increase of the Rabi splitting with temperature, which indicates a temperature induced delocalization of the excitonic wave function resulting in an increase of the oscillator strength. Finally, we demonstrate coherent control of the exciton excited state population via pulsed resonant excitation and observe a damping of the Rabi oscillations with increasing pulse area, which is consistent with our exciton-photon coupling model. We believe that our work outlines the possibility to implement fully scalable platforms of solid state quantum emitters. The latter is one of the key prerequisites for more advanced, integrated nanophotonic quantum circuits.
We detail the design and operation of a compact, discharge light polarimeter for metastability exchange optical pumping of 3He gas near 1 torr under a low magnetic field. The nuclear polarization of 3He can be discerned from its electron polarization, measured via the circular polarization of 668 nm discharge light from an RF excitation. This apparatus measures the circular polarization of this very dim discharge light using a nematic liquid crystal wave retarder (LCR) and a high-gain, transimpedance amplified Si photodiode. We outline corrections required in such a measurement, and discuss contributions to its systematic error.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا