No Arabic abstract
We detail the design and operation of a compact, discharge light polarimeter for metastability exchange optical pumping of 3He gas near 1 torr under a low magnetic field. The nuclear polarization of 3He can be discerned from its electron polarization, measured via the circular polarization of 668 nm discharge light from an RF excitation. This apparatus measures the circular polarization of this very dim discharge light using a nematic liquid crystal wave retarder (LCR) and a high-gain, transimpedance amplified Si photodiode. We outline corrections required in such a measurement, and discuss contributions to its systematic error.
We report high steady-state nuclear polarization of 1 torr $^3$He gas nuclei via metastability-exchange optical pumping at magnetic fields above 2 T. The introduction of highly polarized $^3$He gas into Brookhavens Electron Beam Ion Source would enable a new, polarized $^3$He ion source for use at the Relativistic Heavy Ion Collider and a future Electron-Ion Collider facility. By adapting recent developments in high field metastability-exchange optical pumping for higher pressure gas, we have successfully polarized 1 torr $^3$He sealed cells in the EBIS solenoid. Through careful manipulation of the RF discharge parameters, polarizations above 80% were attained at 2, 3 and 4 T, with 89% being reached at 3 T with a 664 s relaxation time.
The neutron polarization of the NG-C beamline at the NIST Center for Neutron Research was measured as part of the aCORN neutron beta decay experiment. Neutron transmission through a polarized 3He spin filter cell was recorded while adiabatic fast passage (AFP) nuclear magnetic resonance (NMR) reversed the polarization direction of the 3He in an eight-step sequence to account for drifts. The dependence of the neutron transmission on the spin filter direction was used to calculate the neutron polarization. The time dependent transmission was fit to a model which included the neutron spectrum, and 3He polarization losses from spin relaxation and AFP-NMR. The polarization of the NG-C beamline was found to be ${mid}P_mathrm{n}{mid} leq 4times 10^{-4}$ with 90 % confidence.
We present a conceptual design for a polarized $^3$He target for Jefferson Labs CLAS12 spectrometer in its standard configuration. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell inside the CLAS12 5 T solenoid. By transferring this gas to a 20 cm long, 5 K target cell, a target thickness of $3 times 10^{21}$ $^3$He/cm$^2$ will be produced, reaching the detectors specified maximum luminosity with a beam current of 2.5 $mu A$.
We study the dressed states of 3He atoms and experimentally observe the Mollow triplet (MT) induced with an ultra-low-frequency (ULF) oscillating magnetic field as low as 4 Hz. The ULF MT signatures from the ground states of 3He atoms are transferred to the metastable states by metastability-exchange collisions (MECs) and measured optically, which demonstrates 2 s coherence time in the dressed ground states. The result shows the possibility of ULF magnetic field amplitude measurement and a new scheme for optical frequency modulation.
Digitization of detector signals enables analysis of the original waveform to extract timing, particle identification, and energy deposition information. Here we present the use of analytical functions based on sigmoids to model and fit such pulse shapes from liquid organic scintillators, though the method should also be applicable to other detector systems. Neutron and gamma interactions in NE213 detectors were digitized from the phototube anode and fit using a sigmoid-based function. The acuity of the fit in extracting timing information and performing neutron-gamma pulse-shape discrimination are presented and discussed.