We design and analyze solution techniques for a linear-quadratic optimal control problem involving the integral fractional Laplacian. We derive existence and uniqueness results, first order optimality conditions, and regularity estimates for the optimal variables. We propose two strategies to discretize the fractional optimal control problem: a semidiscrete approach where the control is not discretized - the so-called variational discretization approach - and a fully discrete approach where the control variable is discretized with piecewise constant functions. Both schemes rely on the discretization of the state equation with the finite element space of continuous piecewise polynomials of degree one. We derive a priori error estimates for both solution techniques. We illustrate the theory with two-dimensional numerical tests.
We develop all of the components needed to construct an adaptive finite element code that can be used to approximate fractional partial differential equations, on non-trivial domains in $dgeq 1$ dimensions. Our main approach consists of taking tools that have been shown to be effective for adaptive boundary element methods and, where necessary, modifying them so that they can be applied to the fractional PDE case. Improved a priori error estimates are derived for the case of quasi-uniform meshes which are seen to deliver sub-optimal rates of convergence owing to the presence of singularities. Attention is then turned to the development of an a posteriori error estimate and error indicators which are suitable for driving an adaptive refinement procedure. We assume that the resulting refined meshes are locally quasi-uniform and develop efficient methods for the assembly of the resulting linear algebraic systems and their solution using iterative methods, including the multigrid method. The storage of the dense matrices along with efficient techniques for computing the dense matrix vector products needed for the iterative solution is also considered. The performance and efficiency of the resulting algorithm is illustrated for a variety of examples.
This work discusses the finite element discretization of an optimal control problem for the linear wave equation with time-dependent controls of bounded variation. The main focus lies on the convergence analysis of the discretization method. The state equation is discretized by a space-time finite element method. The controls are not discretized. Under suitable assumptions optimal convergence rates for the error in the state and control variable are proven. Based on a conditional gradient method the solution of the semi-discretized optimal control problem is computed. The theoretical convergence rates are confirmed in a numerical example.
We present the error analysis of Lagrange interpolation on triangles. A new textit{a priori} error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are imposed in order to get this type of error estimates.
In this paper, we apply blow-up analysis and Liouville type theorems to study pointwise a priori estimates for some quasilinear equations with p-Laplace operator. We first obtain pointwise interior estimates for the gradient of p-harmonic function, i.e., the solution of $Delta_{p}u=0, xinOmega$, which extends the well-established results of the interior estimates of the gradient of harmonic function. We then get singularity and decay estimates of the sign changing solution of Lane-Emden-Fowler type p-Laplace equation $-Delta_{p}u=|u|^{lambda-1}u, xinOmega$, which are then generalized for the equation with general right hand term $f(x,u)$, under some asymptotic conditions of $f$. Lastly, we get pointwise estimates for higher order derivatives of the solution of $-Delta u=u^{lambda},xinOmega$, the case of $p=2$ for p-Laplace equation.
We consider the integral definition of the fractional Laplacian and analyze a linear-quadratic optimal control problem for the so-called fractional heat equation; control constraints are also considered. We derive existence and uniqueness results, first order optimality conditions, and regularity estimates for the optimal variables. To discretize the state equation equation we propose a fully discrete scheme that relies on an implicit finite difference discretization in time combined with a piecewise linear finite element discretization in space. We derive stability results and a novel $L^2(0,T;L^2(Omega))$ a priori error estimate. On the basis of the aforementioned solution technique, we propose a fully discrete scheme for our optimal control problem that discretizes the control variable with piecewise constant functions and derive a priori error estimates for it. We illustrate the theory with one- and two-dimensional numerical experiments.
Marta DElia
,Christian Glusa
,Enrique Otarola
.
(2018)
.
"A priori error estimates for the optimal control of the integral fractional Laplacian"
.
Marta D'Elia
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا