No Arabic abstract
We consider the integral definition of the fractional Laplacian and analyze a linear-quadratic optimal control problem for the so-called fractional heat equation; control constraints are also considered. We derive existence and uniqueness results, first order optimality conditions, and regularity estimates for the optimal variables. To discretize the state equation equation we propose a fully discrete scheme that relies on an implicit finite difference discretization in time combined with a piecewise linear finite element discretization in space. We derive stability results and a novel $L^2(0,T;L^2(Omega))$ a priori error estimate. On the basis of the aforementioned solution technique, we propose a fully discrete scheme for our optimal control problem that discretizes the control variable with piecewise constant functions and derive a priori error estimates for it. We illustrate the theory with one- and two-dimensional numerical experiments.
We reconsider the variational integration of optimal control problems for mechanical systems based on a direct discretization of the Lagrange-dAlembert principle. This approach yields discrete dynamical constraints which by construction preserve important structural properties of the system, like the evolution of the momentum maps or the energy behavior. Here, we employ higher order quadrature rules based on polynomial collocation. The resulting variational time discretization decreases the overall computational effort.
A class of optimal control problems of hybrid nature governed by semilinear parabolic equations is considered. These problems involve the optimization of switching times at which the dynamics, the integral cost, and the bounds on the control may change. First- and second-order optimality conditions are derived. The analysis is based on a reformulation involving a judiciously chosen transformation of the time domains. For autonomous systems and time-independent integral cost, we prove that the Hamiltonian is constant in time when evaluated along the optimal controls and trajectories. A numerical example is provided.
We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.
In this paper, we aim to explore optimal regional trajectory tracking control problems of the anomalous subdiffusion processes governed by time-fractional diffusion systems under the Neumann boundary conditions. Using eigenvalue theory of the system operator and the semigroup theory, we explore the existence and some estimates of the mild solution to the considered system. An approach on finding solution to the optimal problem that minimizes the regional trajectory tracking error and the corresponding control cost over a finite space and time domain is then explored via the Hilbert uniqueness method (HUM). The obtained results not only can be directly used to investigate the systems that are not controllable on the whole domain, but also yield an explicit expression of the control signal in terms of the desired trajectory. Most importantly, it is worth noting that our results in this paper are still novel even for the special case when the order of fractional derivative is equal to one. Finally, we provide a numerical example to illustrate our theoretical results.
We design and analyze solution techniques for a linear-quadratic optimal control problem involving the integral fractional Laplacian. We derive existence and uniqueness results, first order optimality conditions, and regularity estimates for the optimal variables. We propose two strategies to discretize the fractional optimal control problem: a semidiscrete approach where the control is not discretized - the so-called variational discretization approach - and a fully discrete approach where the control variable is discretized with piecewise constant functions. Both schemes rely on the discretization of the state equation with the finite element space of continuous piecewise polynomials of degree one. We derive a priori error estimates for both solution techniques. We illustrate the theory with two-dimensional numerical tests.