Do you want to publish a course? Click here

Graded polynomial identities as identities of universal algebras

80   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $A$ and $B$ be finite-dimensional simple algebras with arbitrary signature over an algebraically closed field. Suppose $A$ and $B$ are graded by a semigroup $S$ so that the graded identitical relations of $A$ are the same as those of $B$. Then $A$ is isomorphic to $B$ as an $S$-graded algebra.

rate research

Read More

Let G be any group and F an algebraically closed field of characteristic zero. We show that any G-graded finite dimensional associative G-simple algebra over F is determined up to a G-graded isomorphism by its G-graded polynomial identities. This result was proved by Koshlukov and Zaicev in case G is abelian.
Let A and B be finite dimensional simple real algebras with division gradings by an abelian group G. In this paper we give necessary and sufficient conditions for the coincidence of the graded identities of A and B. We also prove that every finite dimensional simple real algebra with a G-grading satisfies the same graded identities as a matrix algebra over an algebra D with a division grading that is either a regular grading or a non-regular Pauli grading. Moreover we determine when the graded identities of two such algebras coincide. For graded simple algebras over an algebraically closed field it is known that two algebras satisfy the same graded identities if and only if they are isomorphic as graded algebras.
Let G be a finite group and A a finite dimensional G-graded algebra over a field of characteristic zero. When A is simple as a G-graded algebra, by mean of Regev central polynomials we construct multialternating graded polynomials of arbitrarily large degree non vanishing on A. As a consequence we compute the exponential rate of growth of the sequence of graded codimensions of an arbitrary G-graded algebra satisfying an ordinary polynomial identity. In particular we show it is an integer. The result was proviously known in case G is abelian.
Comtrans algebras, arising in web geometry, have two trilinear operations, commutator and translator. We determine a Grobner basis for the comtrans operad, and state a conjecture on its dimension formula. We study multilinear polynomial identities for the special commutator $[x,y,z] = xyz-yxz$ and special translator $langle x, y, z rangle = xyz-yzx$ in associative triple systems. In degree 3, the defining identities for comtrans algebras generate all identities. In degree 5, we simplify known identities for each operation and determine new identities relating the operations. In degree 7, we use representation theory of the symmetric group to show that each operation satisfies identities which do not follow from those of lower degree but there are no new identities relating the operations. We use noncommutative Grobner bases to construct the universal associative envelope for the special comtrans algebra of $2 times 2$ matrices.
We survey a vast array of known results and techniques in the area of polynomial identities in pointed Hopf algebras. Some new results are proven in the setting of Hopf algebras that appeared in papers of D. Radford and N. Andruskiewitsch - H.-J. Schneider.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا