Do you want to publish a course? Click here

Graded identities of simple real graded division algebras

74   0   0.0 ( 0 )
 Added by Diogo Diniz
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Let A and B be finite dimensional simple real algebras with division gradings by an abelian group G. In this paper we give necessary and sufficient conditions for the coincidence of the graded identities of A and B. We also prove that every finite dimensional simple real algebra with a G-grading satisfies the same graded identities as a matrix algebra over an algebra D with a division grading that is either a regular grading or a non-regular Pauli grading. Moreover we determine when the graded identities of two such algebras coincide. For graded simple algebras over an algebraically closed field it is known that two algebras satisfy the same graded identities if and only if they are isomorphic as graded algebras.



rate research

Read More

We classify, up to isomorphism and up to equivalence, involutions on graded-division finite-dimensional simple real (associative) algebras, when the grading group is abelian.
Let G be any group and F an algebraically closed field of characteristic zero. We show that any G-graded finite dimensional associative G-simple algebra over F is determined up to a G-graded isomorphism by its G-graded polynomial identities. This result was proved by Koshlukov and Zaicev in case G is abelian.
We give a full classification, up to equivalence, of finite-dimensional graded division algebras over the field of real numbers. The grading group is any abelian group.
Let $A$ and $B$ be finite-dimensional simple algebras with arbitrary signature over an algebraically closed field. Suppose $A$ and $B$ are graded by a semigroup $S$ so that the graded identitical relations of $A$ are the same as those of $B$. Then $A$ is isomorphic to $B$ as an $S$-graded algebra.
A graded-division algebra is an algebra graded by a group such that all nonzero homogeneous elements are invertible. This includes division algebras equipped with an arbitrary group grading (including the trivial grading). We show that a classification of finite-dimensional graded-central graded-division algebras over an arbitrary field $mathbb{F}$ can be reduced to the following three classifications, for each finite Galois extension $mathbb{L}$ of $mathbb{F}$: (1) finite-dimensional central division algebras over $mathbb{L}$, up to isomorphism; (2) twisted group algebras of finite groups over $mathbb{L}$, up to graded-isomorphism; (3) $mathbb{F}$-forms of certain graded matrix algebras with coefficients in $Deltaotimes_{mathbb{L}}mathcal{C}$ where $Delta$ is as in (1) and $mathcal{C}$ is as in (2). As an application, we classify, up to graded-isomorphism, the finite-dimensional graded-division algebras over the field of real numbers (or any real closed field) with an abelian grading group. We also discuss group gradings on fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا