Do you want to publish a course? Click here

DSR: Direct Self-rectification for Uncalibrated Dual-lens Cameras

93   0   0.0 ( 0 )
 Added by Ruichao Xiao
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

With the developments of dual-lens camera modules,depth information representing the third dimension of thecaptured scenes becomes available for smartphones. It isestimated by stereo matching algorithms, taking as input thetwo views captured by dual-lens cameras at slightly differ-ent viewpoints. Depth-of-field rendering (also be referred toas synthetic defocus or bokeh) is one of the trending depth-based applications. However, to achieve fast depth estima-tion on smartphones, the stereo pairs need to be rectified inthe first place. In this paper, we propose a cost-effective so-lution to perform stereo rectification for dual-lens camerascalled direct self-rectification, short for DSR1. It removesthe need of individual offline calibration for every pair ofdual-lens cameras. In addition, the proposed solution isrobust to the slight movements, e.g., due to collisions, ofthe dual-lens cameras after fabrication. Different with ex-isting self-rectification approaches, our approach computesthe homography in a novel way with zero geometric distor-tions introduced to the master image. It is achieved by di-rectly minimizing the vertical displacements of correspond-ing points between the original master image and the trans-formed slave image. Our method is evaluated on both real-istic and synthetic stereo image pairs, and produces supe-rior results compared to the calibrated rectification or otherself-rectification approaches

rate research

Read More

In this paper, we derive a new differential homography that can account for the scanline-varying camera poses in Rolling Shutter (RS) cameras, and demonstrate its application to carry out RS-aware image stitching and rectification at one stroke. Despite the high complexity of RS geometry, we focus in this paper on a special yet common input -- two consecutive frames from a video stream, wherein the inter-frame motion is restricted from being arbitrarily large. This allows us to adopt simpler differential motion model, leading to a straightforward and practical minimal solver. To deal with non-planar scene and camera parallax in stitching, we further propose an RS-aware spatially-varying homography field in the principle of As-Projective-As-Possible (APAP). We show superior performance over state-of-the-art methods both in RS image stitching and rectification, especially for images captured by hand-held shaking cameras.
This paper proposes a method to extract the position and pose of vehicles in the 3D world from a single traffic camera. Most previous monocular 3D vehicle detection algorithms focused on cameras on vehicles from the perspective of a driver, and assumed known intrinsic and extrinsic calibration. On the contrary, this paper focuses on the same task using uncalibrated monocular traffic cameras. We observe that the homography between the road plane and the image plane is essential to 3D vehicle detection and the data synthesis for this task, and the homography can be estimated without the camera intrinsics and extrinsics. We conduct 3D vehicle detection by estimating the rotated bounding boxes (r-boxes) in the birds eye view (BEV) images generated from inverse perspective mapping. We propose a new regression target called textit{tailed~r-box} and a textit{dual-view} network architecture which boosts the detection accuracy on warped BEV images. Experiments show that the proposed method can generalize to new camera and environment setups despite not seeing imaged from them during training.
In this work, we present an effective multi-view approach to closed-loop end-to-end learning of precise manipulation tasks that are 3D in nature. Our method learns to accomplish these tasks using multiple statically placed but uncalibrated RGB camera views without building an explicit 3D representation such as a pointcloud or voxel grid. This multi-camera approach achieves superior task performance on difficult stacking and insertion tasks compared to single-view baselines. Single view robotic agents struggle from occlusion and challenges in estimating relative poses between points of interest. While full 3D scene representations (voxels or pointclouds) are obtainable from registered output of multiple depth sensors, several challenges complicate operating off such explicit 3D representations. These challenges include imperfect camera calibration, poor depth maps due to object properties such as reflective surfaces, and slower inference speeds over 3D representations compared to 2D images. Our use of static but uncalibrated cameras does not require camera-robot or camera-camera calibration making the proposed approach easy to setup and our use of textit{sensor dropout} during training makes it resilient to the loss of camera-views after deployment.
In this paper, we solve the sample shortage problem in the human parsing task. We begin with the self-learning strategy, which generates pseudo-labels for unlabeled data to retrain the model. However, directly using noisy pseudo-labels will cause error amplification and accumulation. Considering the topology structure of human body, we propose a trainable graph reasoning method that establishes internal structural connections between graph nodes to correct two typical errors in the pseudo-labels, i.e., the global structural error and the local consistency error. For the global error, we first transform category-wise features into a high-level graph model with coarse-grained structural information, and then decouple the high-level graph to reconstruct the category features. The reconstructed features have a stronger ability to represent the topology structure of the human body. Enlarging the receptive field of features can effectively reducing the local error. We first project feature pixels into a local graph model to capture pixel-wise relations in a hierarchical graph manner, then reverse the relation information back to the pixels. With the global structural and local consistency modules, these errors are rectified and confident pseudo-labels are generated for retraining. Extensive experiments on the LIP and the ATR datasets demonstrate the effectiveness of our global and local rectification modules. Our method outperforms other state-of-the-art methods in supervised human parsing tasks.
Self-calibration of camera intrinsics and radial distortion has a long history of research in the computer vision community. However, it remains rare to see real applications of such techniques to modern Simultaneous Localization And Mapping (SLAM) systems, especially in driving scenarios. In this paper, we revisit the geometric approach to this problem, and provide a theoretical proof that explicitly shows the ambiguity between radial distortion and scene depth when two-view geometry is used to self-calibrate the radial distortion. In view of such geometric degeneracy, we propose a learning approach that trains a convolutional neural network (CNN) on a large amount of synthetic data. We demonstrate the utility of our proposed method by applying it as a checkerboard-free calibration tool for SLAM, achieving comparable or superior performance to previous learning and hand-crafted methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا