No Arabic abstract
In this paper, we solve the sample shortage problem in the human parsing task. We begin with the self-learning strategy, which generates pseudo-labels for unlabeled data to retrain the model. However, directly using noisy pseudo-labels will cause error amplification and accumulation. Considering the topology structure of human body, we propose a trainable graph reasoning method that establishes internal structural connections between graph nodes to correct two typical errors in the pseudo-labels, i.e., the global structural error and the local consistency error. For the global error, we first transform category-wise features into a high-level graph model with coarse-grained structural information, and then decouple the high-level graph to reconstruct the category features. The reconstructed features have a stronger ability to represent the topology structure of the human body. Enlarging the receptive field of features can effectively reducing the local error. We first project feature pixels into a local graph model to capture pixel-wise relations in a hierarchical graph manner, then reverse the relation information back to the pixels. With the global structural and local consistency modules, these errors are rectified and confident pseudo-labels are generated for retraining. Extensive experiments on the LIP and the ATR datasets demonstrate the effectiveness of our global and local rectification modules. Our method outperforms other state-of-the-art methods in supervised human parsing tasks.
To address the challenging task of instance-aware human part parsing, a new bottom-up regime is proposed to learn category-level human semantic segmentation as well as multi-person pose estimation in a joint and end-to-end manner. It is a compact, efficient and powerful framework that exploits structural information over different human granularities and eases the difficulty of person partitioning. Specifically, a dense-to-sparse projection field, which allows explicitly associating dense human semantics with sparse keypoints, is learnt and progressively improved over the network feature pyramid for robustness. Then, the difficult pixel grouping problem is cast as an easier, multi-person joint assembling task. By formulating joint association as maximum-weight bipartite matching, a differentiable solution is developed to exploit projected gradient descent and Dykstras cyclic projection algorithm. This makes our method end-to-end trainable and allows back-propagating the grouping error to directly supervise multi-granularity human representation learning. This is distinguished from current bottom-up human parsers or pose estimators which require sophisticated post-processing or heuristic greedy algorithms. Experiments on three instance-aware human parsing datasets show that our model outperforms other bottom-up alternatives with much more efficient inference.
Multiple human parsing aims to segment various human parts and associate each part with the corresponding instance simultaneously. This is a very challenging task due to the diverse human appearance, semantic ambiguity of different body parts, and complex background. Through analysis of multiple human parsing task, we observe that human-centric global perception and accurate instance-level parsing scoring are crucial for obtaining high-quality results. But the most state-of-the-art methods have not paid enough attention to these issues. To reverse this phenomenon, we present Renovating Parsing R-CNN (RP R-CNN), which introduces a global semantic enhanced feature pyramid network and a parsing re-scoring network into the existing high-performance pipeline. The proposed RP R-CNN adopts global semantic representation to enhance multi-scale features for generating human parsing maps, and regresses a confidence score to represent its quality. Extensive experiments show that RP R-CNN performs favorably against state-of-the-art methods on CIHP and MHP-v2 datasets. Code and models are available at https://github.com/soeaver/RP-R-CNN.
Prior highly-tuned human parsing models tend to fit towards each dataset in a specific domain or with discrepant label granularity, and can hardly be adapted to other human parsing tasks without extensive re-training. In this paper, we aim to learn a single universal human parsing model that can tackle all kinds of human parsing needs by unifying label annotations from different domains or at various levels of granularity. This poses many fundamental learning challenges, e.g. discovering underlying semantic structures among different label granularity, performing proper transfer learning across different image domains, and identifying and utilizing label redundancies across related tasks. To address these challenges, we propose a new universal human parsing agent, named Graphonomy, which incorporates hierarchical graph transfer learning upon the conventional parsing network to encode the underlying label semantic structures and propagate relevant semantic information. In particular, Graphonomy first learns and propagates compact high-level graph representation among the labels within one dataset via Intra-Graph Reasoning, and then transfers semantic information across multiple datasets via Inter-Graph Transfer. Various graph transfer dependencies (eg, similarity, linguistic knowledge) between different datasets are analyzed and encoded to enhance graph transfer capability. By distilling universal semantic graph representation to each specific task, Graphonomy is able to predict all levels of parsing labels in one system without piling up the complexity. Experimental results show Graphonomy effectively achieves the state-of-the-art results on three human parsing benchmarks as well as advantageous universal human parsing performance.
How to estimate the quality of the network output is an important issue, and currently there is no effective solution in the field of human parsing. In order to solve this problem, this work proposes a statistical method based on the output probability map to calculate the pixel quality information, which is called pixel score. In addition, the Quality-Aware Module (QAM) is proposed to fuse the different quality information, the purpose of which is to estimate the quality of human parsing results. We combine QAM with a concise and effective network design to propose Quality-Aware Network (QANet) for human parsing. Benefiting from the superiority of QAM and QANet, we achieve the best performance on three multiple and one single human parsing benchmarks, including CIHP, MHP-v2, Pascal-Person-Part and LIP. Without increasing the training and inference time, QAM improves the AP$^text{r}$ criterion by more than 10 points in the multiple human parsing task. QAM can be extended to other tasks with good quality estimation, e.g. instance segmentation. Specifically, QAM improves Mask R-CNN by ~1% mAP on COCO and LVISv1.0 datasets. Based on the proposed QAM and QANet, our overall system wins 1st place in CVPR2019 COCO DensePose Challenge, and 1st place in Track 1 & 2 of CVPR2020 LIP Challenge. Code and models are available at https://github.com/soeaver/QANet.
In human parsing, the pixel-wise classification loss has drawbacks in its low-level local inconsistency and high-level semantic inconsistency. The introduction of the adversarial network tackles the two problems using a single discriminator. However, the two types of parsing inconsistency are generated by distinct mechanisms, so it is difficult for a single discriminator to solve them both. To address the two kinds of inconsistencies, this paper proposes the Macro-Micro Adversarial Net (MMAN). It has two discriminators. One discriminator, Macro D, acts on the low-resolution label map and penalizes semantic inconsistency, e.g., misplaced body parts. The other discriminator, Micro D, focuses on multiple patches of the high-resolution label map to address the local inconsistency, e.g., blur and hole. Compared with traditional adversarial networks, MMAN not only enforces local and semantic consistency explicitly, but also avoids the poor convergence problem of adversarial networks when handling high resolution images. In our experiment, we validate that the two discriminators are complementary to each other in improving the human parsing accuracy. The proposed framework is capable of producing competitive parsing performance compared with the state-of-the-art methods, i.e., mIoU=46.81% and 59.91% on LIP and PASCAL-Person-Part, respectively. On a relatively small dataset PPSS, our pre-trained model demonstrates impressive generalization ability. The code is publicly available at https://github.com/RoyalVane/MMAN.