Do you want to publish a course? Click here

The coronal volume of energetic particles in solar flares as revealed by microwave imaging

412   0   0.0 ( 0 )
 Added by Gregory Fleishman
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spectrum of gyrosynchrotron emission from solar flares generally peaks in the microwave range. Its optically-thin, high-frequency component, above the spectral peak, is often used for diagnostics of the nonthermal electrons and the magnetic field in the radio source. Under favorable conditions, its low-frequency counterpart brings additional, complementary information about these parameters as well as thermal plasma diagnostics, either through gyrosynchrotron self-absorption, free-free absorption by the thermal plasma, or the suppression of emission through the so-called Razin effect. However, their effects on the low-frequency spectrum are often masked by spatial nonuniformity. To disentangle the various contributions to low-frequency gyrosynchrotron emission, a combination of spectral and imaging data is needed. To this end, we have investigated Owens Valley Solar Array (OVSA) multi-frequency images for 26 solar bursts observed jointly with Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) during the first half of 2002. For each, we examined dynamic spectra, time- and frequency-synthesis maps, RHESSI images with overlaid OVSA contours, and a few representative single-frequency snapshot OVSA images. We focus on the frequency dependence of microwave source sizes derived from the OVSA images and their effect on the low-frequency microwave spectral slope. We succeed in categorizing 18 analyzed events into several groups. Four events demonstrate clear evidence of being dominated by gyrosynchrotron self-absorption, with an inferred brightness temperature of $geq10^8$~K. The low-frequency spectra in the remaining events are affected to varying degree by Razin suppression. We find that many radio sources are rather large at low frequencies, which can have important implications for solar energetic particle production and escape.

rate research

Read More

In addition to their anomalous abundances, 3He-rich solar energetic particles (SEPs) show puzzling energy spectral shapes varying from rounded forms to power laws where the later are characteristics of shock acceleration. Solar sources of these particles have been often associated with jets and narrow CMEs, which are the signatures of magnetic reconnection involving open field. Recent reports on new associations with large-scale EUV waves bring new insights on acceleration and transport of 3He-rich SEPs in the corona. We examined energy spectra for 32 3He-rich SEP events observed by ACE at L1 near solar minimum in 2007-2010 and compared the spectral shapes with solar flare signatures obtained from STEREO EUV images. We found the events with jets or brightenings tend to be associated with rounded spectra and the events with coronal waves with power laws. This suggests that coronal waves may be related to the unknown second stage mechanism commonly used to interpret spectral forms of 3He-rich SEPs.
Traditionally, the solar magnetic field has been considered to have a negligible effect in the outer regions of the heliosphere. Recent works have shown that the solar magnetic field may play a crucial role in collimating the plasma in the heliosheath. Interstellar Boundary Explorer (IBEX) observations of the heliotail indicated a latitudinal structure varying with energy in the energetic neutral atom (ENA) fluxes. At energies ~1 keV, the ENA fluxes show an enhancement at low latitudes and a deficit of ENAs near the poles. At energies >2.7 keV, ENA fluxes had a deficit within low latitudes, and lobes of higher ENA flux near the poles. This ENA structure was initially interpreted to be a result of the latitudinal profile of the solar wind during solar minimum. We extend the work of Kornbleuth et al. (2018) by using solar minimum-like conditions and the recently developed SHIELD model. The SHIELD model couples the magnetohydrodynamic (MHD) plasma solution with a kinetic description of neutral hydrogen. We show that while the latitudinal profile of the solar wind during solar minimum contributes to the lobes in ENA maps, the collimation by the solar magnetic field is important in creating and shaping the two high latitude lobes of enhanced ENA flux observed by IBEX. This is the first work to explore the effect of the changing solar magnetic field strength on ENA maps. Our findings suggest that IBEX is providing the first observational evidence of the collimation of the heliosheath plasma by the solar magnetic field.
Globally-propagating shocks in the solar corona have long been studied to quantify their involvement in the acceleration of energetic particles. However, this work has tended to focus on large events associated with strong solar flares and fast coronal mass ejections (CMEs), where the waves are sufficiently fast to easily accelerate particles to high energies. Here we present observations of particle acceleration associated with a global wave event which occurred on 1 October 2011. Using differential emission measure analysis, the global shock wave was found to be incredibly weak, with an Alfven Mach number of ~1.008-1.013. Despite this, spatially-resolved type III radio emission was observed by the Nanc{c}ay RadioHeliograph at distinct locations near the shock front, suggesting localised acceleration of energetic electrons. Further investigation using a magnetic field extrapolation identified a fan structure beneath a magnetic null located above the source active region, with the erupting CME contained within this topological feature. We propose that a reconfiguration of the coronal magnetic field driven by the erupting CME enabled the weak shock to accelerate particles along field lines initially contained within the fan and subsequently opened into the heliosphere, producing the observed type III emission. These results suggest that even weak global shocks in the solar corona can accelerate energetic particles via reconfiguration of the surrounding magnetic field.
Solar energetic particle (SEP) events are related to flares and coronal mass ejections (CMEs). This work is a new investigation of statistical relationships between SEP peak intensities - deka-MeV protons and near-relativistic electrons - and characteristic quantities of the associated solar activity. We consider the speed of the CME and quantities describing the flare-related energy release: peak flux and fluence of soft X-ray (SXR) emission, fluence of microwave emission. The sample comprises 38 SEP events associated with strong SXR bursts (classes M and X) in the western solar hemisphere between 1997 and 2006, and where the flare-related particle acceleration is accompanied by radio bursts indicating electron escape to the interplanetary space. The main distinction of the present statistical analysis from earlier work is that besides the classical Pearson correlation coefficient the partial correlation coefficients are calculated in order to disentangle the effects of correlations between the solar parameters themselves. The classical correlation analysis shows the usual picture of correlations with broad scatter between SEP peak intensities and the different parameters of solar activity, and strong correlations between the solar activity parameters themselves. The partial correlation analysis shows that the only parameters that affect significantly the SEP intensity are the CME speed and the SXR fluence. The SXR peak flux and the microwave fluence have no additional contribution. We conclude that these findings bring statistical evidence that both flare acceleration and CME shock acceleration contribute to the deka-MeV proton and near-relativistic electron populations in large SEP events.
193 - F. Pecora , S. Servidio , A. Greco 2021
Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper, we show observational evidence that intensity variations of solar energetic particles can be correlated with the occurrence of helical magnetic flux tubes and their boundaries. The analysis is carried out using data from Parker Solar Probe orbit 5, in the period 2020 May 24 to June 2. We use FIELDS magnetic field data and energetic particle measurements from the Integrated Science Investigation of the Sun (isois) suite on the Parker Solar Probe. We identify magnetic flux ropes by employing a real-space evaluation of magnetic helicity, and their potential boundaries using the Partial Variance of Increments method. We find that energetic particles are either confined within or localized outside of helical flux tubes, suggesting that the latter act as transport boundaries for particles, consistent with previously developed viewpoints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا