Do you want to publish a course? Click here

Localised acceleration of energetic particles by a weak shock in the solar corona

100   0   0.0 ( 0 )
 Added by David Long
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Globally-propagating shocks in the solar corona have long been studied to quantify their involvement in the acceleration of energetic particles. However, this work has tended to focus on large events associated with strong solar flares and fast coronal mass ejections (CMEs), where the waves are sufficiently fast to easily accelerate particles to high energies. Here we present observations of particle acceleration associated with a global wave event which occurred on 1 October 2011. Using differential emission measure analysis, the global shock wave was found to be incredibly weak, with an Alfven Mach number of ~1.008-1.013. Despite this, spatially-resolved type III radio emission was observed by the Nanc{c}ay RadioHeliograph at distinct locations near the shock front, suggesting localised acceleration of energetic electrons. Further investigation using a magnetic field extrapolation identified a fan structure beneath a magnetic null located above the source active region, with the erupting CME contained within this topological feature. We propose that a reconfiguration of the coronal magnetic field driven by the erupting CME enabled the weak shock to accelerate particles along field lines initially contained within the fan and subsequently opened into the heliosphere, producing the observed type III emission. These results suggest that even weak global shocks in the solar corona can accelerate energetic particles via reconfiguration of the surrounding magnetic field.



rate research

Read More

Solar energetic particles acceleration by a shock wave accompanying a coronal mass ejection (CME) is studied. The description of the accelerated particle spectrum evolution is based on the numerical calculation of the diffusive transport equation with a set of realistic parameters. The relation between the CME and the shock speeds, which depend on the initial CME radius, is determined. Depending on the initial CME radius, its speed, and the magnetic energy of the scattering Alfven waves, the accelerated particle spectrum is established during 10-60 minutes from the beginning of CME motion. The maximum energies of particles reach 0.1-10 GeV. The CME radii of 3-5 $R_odot$ and the shock radii of 5-10 $R_odot$ agree with observations. The calculated particle spectra agree with the observed ones in events registered by ground-based detectors if the turbulence spectrum in the solar corona significantly differs from the Kolmogorov one.
66 - Bin Chen 2015
Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model of solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well-reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.
64 - Takuya Takahashi 2017
Flare associated coronal shock waves sometimes interact with solar prominences leading to large amplitude prominence oscillations. Such prominence activation gives us unique opportunity to track time evolution of shock-cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock-cloud interaction is extensively studied, coronal shock-solar prominence interaction is rarely studied in the context of shock-cloud interaction. Associated with X5.4 class solar flare occurred on 7 March, 2012, a globally propagated coronal shock wave interacted with a polar prominence leading to large amplitude prominence oscillation. In this paper, we studied bulk acceleration and excitation of internal flow of the shocked prominence using three-dimensional MHD simulations. We studied eight magnetohydrodynamic (MHD) simulation runs with different mass density structure of the prominence, and one hydrodynamic simulation run, and compared the result. In order to compare observed motion of activated prominence with corresponding simulation, we also studied prominence activation by injection of triangular shaped coronal shock. We found that magnetic tension force mainly accelerate (and then decelerate) the prominence. The internal flow, on the other hand, is excited during the shock front sweeps through the the prominence and damps almost exponentially. We construct phenomenological model of bulk momentum transfer from shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence-activation model, we diagnosed physical parameters of coronal shock wave. The estimated energy of the coronal shock is several percent of total energy released during the X5.4 flare.
Nonthermal loop-top sources in solar flares are the most prominent observational signature that suggests energy release and particle acceleration in the solar corona. Although several scenarios for particle acceleration have been proposed, the origin of the loop-top sources remains unclear. Here we present a model that combines a large-scale magnetohydrodynamic simulation of a two-ribbon flare with a particle acceleration and transport model for investigating electron acceleration by a fast-mode termination shock at the looptop. Our model provides spatially resolved electron distribution that evolves in response to the dynamic flare geometry. We find a concave-downward magnetic structure located below the flare termination shock, induced by the fast reconnection downflows. It acts as a magnetic trap to confine the electrons at the looptop for an extended period of time. The electrons are energized significantly as they cross the shock front, and eventually build up a power-law energy spectrum extending to hundreds of keV. We suggest that this particle acceleration and transport scenario driven by a flare termination shock is a viable interpretation for the observed nonthermal loop-top sources.
Eruptive activity in the solar corona can often lead to the propagation of shock waves. In the radio domain the primary signature of such shocks are type II radio bursts, observed in dynamic spectra as bands of emission slowly drifting towards lower frequencies over time. These radio bursts can sometimes have inhomogeneous and fragmented fine structure, but the cause of this fine structure is currently unclear. Here we observe a type II radio burst on 2019-March-20th using the New Extension in Nanc{c}ay Upgrading LOFAR (NenuFAR), a radio interferometer observing between 10-85 MHz. We show that the distribution of size-scales of density perturbations associated with the type II fine structure follows a power law with a spectral index in the range of $alpha=-1.7$ to -2.0, which closely matches the value of $-5/3$ expected of fully developed turbulence. We determine this turbulence to be upstream of the shock, in background coronal plasma at a heliocentric distance of $sim$2 R$_{odot}$. The observed inertial size-scales of the turbulent density inhomogeneities range from $sim$62 Mm to $sim$209 km. This shows that type II fine structure and fragmentation can be due to shock propagation through an inhomogeneous and turbulent coronal plasma, and we discuss the implications of this on electron acceleration in the coronal shock.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا