Do you want to publish a course? Click here

Hierarchical communities in the walnut structure of the Japanese production network

303   0   0.0 ( 0 )
 Added by Abhijit Chakraborty
 Publication date 2018
  fields Physics Financial
and research's language is English




Ask ChatGPT about the research

This paper studies the structure of the Japanese production network, which includes one million firms and five million supplier-customer links. This study finds that this network forms a tightly-knit structure with a core giant strongly connected component (GSCC) surrounded by IN and OUT components constituting two half-shells of the GSCC, which we call atextit{walnut} structure because of its shape. The hierarchical structure of the communities is studied by the Infomap method, and most of the irreducible communities are found to be at the second level. The composition of some of the major communities, including overexpressions regarding their industrial or regional nature, and the connections that exist between the communities are studied in detail. The findings obtained here cause us to question the validity and accuracy of using the conventional input-output analysis, which is expected to be useful when firms in the same sectors are highly connected to each other.



rate research

Read More

To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.
Generally, open innovation is a lucrative research topic within industries relying on innovation, such as the pharmaceutical industry, which are also known as knowledge-intensive industries. However, the dynamics of drug pipelines within a small-medium enterprise level in the global economy remains concerning. To reveal the actual situation of pharmaceutical innovation, we investigate the feature of knowledge flows between the licensor and licensee in the drug pipeline based on a multilayer network constructed with the drug pipeline, global supply chain, and ownership data. Thus, our results demonstrate proven similarities between the knowledge flows in the drug pipeline among the supply chains, which generally agrees with the situation of pharmaceutical innovation collaborated with other industries, such as the artificial intelligence industry.
A number of recent works have concentrated on a few statistical properties of complex networks, such as the clustering, the right-skewed degree distribution and the community, which are common to many real world networks. In this paper, we address the hierarchy property sharing among a large amount of networks. Based upon the eigenvector centrality (EC) measure, a method is proposed to reconstruct the hierarchical structure of a complex network. It is tested on the Santa Fe Institute collaboration network, whose structure is well known. We also apply it to a Mathematicians collaboration network and the protein interaction network of Yeast. The method can detect significantly hierarchical structures in these networks.
114 - Kyu-Min Lee , Kwang-Il Goh 2016
Many real-world complex systems across natural, social, and economical domains consist of manifold layers to form multiplex networks. The multiple network layers give rise to nonlinear effect for the emergent dynamics of systems. Especially, weak layers that can potentially play significant role in amplifying the vulnerability of multiplex networks might be shadowed in the aggregated single-layer network framework which indiscriminately accumulates all layers. Here we present a simple model of cascading failure on multiplex networks of weight-heterogeneous layers. By simulating the model on the multiplex network of international trades, we found that the multiplex model produces more catastrophic cascading failures which are the result of emergent collective effect of coupling layers, rather than the simple sum thereof. Therefore risks can be systematically underestimated in single-layer network analyses because the impact of weak layers can be overlooked. We anticipate that our simple theoretical study can contribute to further investigation and design of optimal risk-averse real-world complex systems.
In this paper we analyse the bipartite Colombian firms-products network, throughout a period of five years, from 2010 to 2014. Our analysis depicts a strongly modular system, with several groups of firms specializing in the export of specific categories of products. These clusters have been detected by running the bipartite variant of the traditional modularity maximization, revealing a bi-modular structure. Interestingly, this finding is refined by applying a recently-proposed algorithm for projecting bipartite networks on the layer of interest and, then, running the Louvain algorithm on the resulting monopartite representations. Important structural differences emerge upon comparing the Colombian firms-products network with the World Trade Web, in particular, the bipartite representation of the latter is not characterized by a similar block-structure, as the modularity maximization fails in revealing (bipartite) nodes clusters. This points out that economic systems behave differently at different scales: while countries tend to diversify their production --potentially exporting a large number of different products-- firms specialize in exporting (substantially very limited) baskets of basically homogeneous products.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا