No Arabic abstract
In this paper we analyse the bipartite Colombian firms-products network, throughout a period of five years, from 2010 to 2014. Our analysis depicts a strongly modular system, with several groups of firms specializing in the export of specific categories of products. These clusters have been detected by running the bipartite variant of the traditional modularity maximization, revealing a bi-modular structure. Interestingly, this finding is refined by applying a recently-proposed algorithm for projecting bipartite networks on the layer of interest and, then, running the Louvain algorithm on the resulting monopartite representations. Important structural differences emerge upon comparing the Colombian firms-products network with the World Trade Web, in particular, the bipartite representation of the latter is not characterized by a similar block-structure, as the modularity maximization fails in revealing (bipartite) nodes clusters. This points out that economic systems behave differently at different scales: while countries tend to diversify their production --potentially exporting a large number of different products-- firms specialize in exporting (substantially very limited) baskets of basically homogeneous products.
In this paper we address the question of the size distribution of firms. To this aim, we use the Bloomberg database comprising multinational firms within the years 1995-2003, and analyze the data of the sales and the total assets of the separate financial statement of the Japanese and the US companies, and make a comparison of the size distributions between the Japanese companies and the US companies. We find that (i) the size distribution of the US firms is approximately log-normal, in agreement with Gibrats observation (Gibrat 1931), and in contrast (ii) the size distribution of the Japanese firms is clearly not log-normal, and the upper tail of the size distribution follows the Pareto law. It agree with the predictions of the Simon model (Simon 1955). Key words: the size distribution of firms, the Gibrats law, and the Pareto law
This paper studies the structure of the Japanese production network, which includes one million firms and five million supplier-customer links. This study finds that this network forms a tightly-knit structure with a core giant strongly connected component (GSCC) surrounded by IN and OUT components constituting two half-shells of the GSCC, which we call atextit{walnut} structure because of its shape. The hierarchical structure of the communities is studied by the Infomap method, and most of the irreducible communities are found to be at the second level. The composition of some of the major communities, including overexpressions regarding their industrial or regional nature, and the connections that exist between the communities are studied in detail. The findings obtained here cause us to question the validity and accuracy of using the conventional input-output analysis, which is expected to be useful when firms in the same sectors are highly connected to each other.
Generally, open innovation is a lucrative research topic within industries relying on innovation, such as the pharmaceutical industry, which are also known as knowledge-intensive industries. However, the dynamics of drug pipelines within a small-medium enterprise level in the global economy remains concerning. To reveal the actual situation of pharmaceutical innovation, we investigate the feature of knowledge flows between the licensor and licensee in the drug pipeline based on a multilayer network constructed with the drug pipeline, global supply chain, and ownership data. Thus, our results demonstrate proven similarities between the knowledge flows in the drug pipeline among the supply chains, which generally agrees with the situation of pharmaceutical innovation collaborated with other industries, such as the artificial intelligence industry.
Using an exhaustive list of Japanese bankruptcy in 1997, we discover a Zipf law for the distribution of total liabilities of bankrupted firms in high debt range. The life-time of these bankrupted firms has exponential distribution in correlation with entry rate of new firms. We also show that the debt and size are highly correlated, so the Zipf law holds consistently with that for size distribution. In attempt to understand ``physics of bankruptcy, we show that a model of debtor-creditor dynamics of firms and a bank, recently proposed by economists, can reproduce these phenomenological findings.
In many data sets, crucial elements co-exist with non-essential ones and noise. For data represented as networks in particular, several methods have been proposed to extract a network backbone, i.e., the set of most important links. However, the question of how the resulting compressed views of the data can effectively be used has not been tackled. Here we address this issue by putting forward and exploring several systematic procedures to build surrogate data from various kinds of temporal network backbones. In particular, we explore how much information about the original data need to be retained alongside the backbone so that the surrogate data can be used in data-driven numerical simulations of spreading processes. We illustrate our results using empirical temporal networks with a broad variety of structures and properties.