Do you want to publish a course? Click here

Reconstruct the Hierarchical Structure in a Complex Network

67   0   0.0 ( 0 )
 Added by Huijie Yang
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

A number of recent works have concentrated on a few statistical properties of complex networks, such as the clustering, the right-skewed degree distribution and the community, which are common to many real world networks. In this paper, we address the hierarchy property sharing among a large amount of networks. Based upon the eigenvector centrality (EC) measure, a method is proposed to reconstruct the hierarchical structure of a complex network. It is tested on the Santa Fe Institute collaboration network, whose structure is well known. We also apply it to a Mathematicians collaboration network and the protein interaction network of Yeast. The method can detect significantly hierarchical structures in these networks.



rate research

Read More

Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling to investigate different hierarchical levels of organization. Tests on real and artificial networks give excellent results.
We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the networks degree distribution. We rigorously prove that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks.
The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economy, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of newest, best performing models -due to Guimera and Sales-Pardo in 2009- to directed networks. The new methodology is able to identify missing and spurious directed interactions, which renders it particularly useful to analyze data reliability in systems like trophic webs, gene regulatory networks, communication patterns and social systems. We also show, using real-world networks, how the method can be employed to help searching for new interactions in an efficient way.
We analyze the stability of the networks giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have unstable connected components. Our results bring novel insights to the design of resilient network topologies and the reinforcement of existing networked systems.
Community structure is one of the most relevant features encountered in numerous real-world applications of networked systems. Despite the tremendous effort of scientists working on this subject over the past few decades to characterize, model, and analyze communities, more investigations are needed to better understand the impact of community structure and its dynamics on networked systems. Here, we first focus on generative models of communities in complex networks and their role in developing strong foundation for community detection algorithms. We discuss modularity and the use of modularity maximization as the basis for community detection. Then, we overview the Stochastic Block Model, its different variants, and inference of community structures from such models. Next, we focus on time evolving networks, where existing nodes and links can disappear and/or new nodes and links may be introduced. The extraction of communities under such circumstances poses an interesting and non-trivial problem that has gained considerable interest over the last decade. We briefly discuss considerable advances made in this field recently. Finally, we focus on immunization strategies essential for targeting the influential spreaders of epidemics in modular networks. Their main goal is to select and immunize a small proportion of individuals from the whole network to control the diffusion process. Various strategies have emerged over the years suggesting different ways to immunize nodes in networks with overlapping and non-overlapping community structure. We first discuss stochastic strategies that require little or no information about the network topology at the expense of their performance. Then, we introduce deterministic strategies that have proven to be very efficient in controlling the epidemic outbreaks, but require complete knowledge of the network.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا