No Arabic abstract
Due to the rapid development of mobile Internet techniques, cloud computation and popularity of online social networking and location-based services, massive amount of multimedia data with geographical information is generated and uploaded to the Internet. In this paper, we propose a novel type of cross-modal multimedia retrieval called geo-multimedia cross-modal retrieval which aims to search out a set of geo-multimedia objects based on geographical distance proximity and semantic similarity between different modalities. Previous studies for cross-modal retrieval and spatial keyword search cannot address this problem effectively because they do not consider multimedia data with geo-tags and do not focus on this type of query. In order to address this problem efficiently, we present the definition of $k$NN geo-multimedia cross-modal query at the first time and introduce relevant conceptions such as cross-modal semantic representation space. To bridge the semantic gap between different modalities, we propose a method named cross-modal semantic matching which contains two important component, i.e., CorrProj and LogsTran, which aims to construct a common semantic representation space for cross-modal semantic similarity measurement. Besides, we designed a framework based on deep learning techniques to implement common semantic representation space construction. In addition, a novel hybrid indexing structure named GMR-Tree combining geo-multimedia data and R-Tree is presented and a efficient $k$NN search algorithm called $k$GMCMS is designed. Comprehensive experimental evaluation on real and synthetic dataset clearly demonstrates that our solution outperforms the-state-of-the-art methods.
With the proliferation of online social networking services and mobile smart devices equipped with mobile communications module and position sensor module, massive amount of multimedia data has been collected, stored and shared. This trend has put forward higher request on massive multimedia data retrieval. In this paper, we investigate a novel spatial query named region of visual interests query (RoVIQ), which aims to search users containing geographical information and visual words. Three baseline methods are presented to introduce how to exploit existing techniques to address this problem. Then we propose the definition of this query and related notions at the first time. To improve the performance of query, we propose a novel spatial indexing structure called quadtree based inverted visual index which is a combination of quadtree, inverted index and visual words. Based on it, we design a efficient search algorithm named region of visual interests search to support RoVIQ. Experimental evaluations on real geo-image datasets demonstrate that our solution outperforms state-of-the-art method.
This paper aims to solve the problem of large-scale video retrieval by a query image. Firstly, we define the problem of top-$k$ image to video query. Then, we combine the merits of convolutional neural networks(CNN for short) and Bag of Visual Word(BoVW for short) module to design a model for video frames information extraction and representation. In order to meet the requirements of large-scale video retrieval, we proposed a visual weighted inverted index(VWII for short) and related algorithm to improve the efficiency and accuracy of retrieval process. Comprehensive experiments show that our proposed technique achieves substantial improvements (up to an order of magnitude speed up) over the state-of-the-art techniques with similar accuracy.
This paper proposes a novel energy-efficient multimedia delivery system called EStreamer. First, we study the relationship between buffer size at the client, burst-shaped TCP-based multimedia traffic, and energy consumption of wireless network interfaces in smartphones. Based on the study, we design and implement EStreamer for constant bit rate and rate-adaptive streaming. EStreamer can improve battery lifetime by 3x, 1.5x and 2x while streaming over Wi-Fi, 3G and 4G respectively.
With the vigorous development of multimedia equipment and applications, efficient retrieval of large-scale multi-modal data has become a trendy research topic. Thereinto, hashing has become a prevalent choice due to its retrieval efficiency and low storage cost. Although multi-modal hashing has drawn lots of attention in recent years, there still remain some problems. The first point is that existing methods are mainly designed in batch mode and not able to efficiently handle streaming multi-modal data. The second point is that all existing online multi-modal hashing methods fail to effectively handle unseen new classes which come continuously with streaming data chunks. In this paper, we propose a new model, termed Online enhAnced SemantIc haShing (OASIS). We design novel semantic-enhanced representation for data, which could help handle the new coming classes, and thereby construct the enhanced semantic objective function. An efficient and effective discrete online optimization algorithm is further proposed for OASIS. Extensive experiments show that our method can exceed the state-of-the-art models. For good reproducibility and benefiting the community, our code and data are already available in supplementary material and will be made publicly available.
We introduce a new task, MultiMedia Event Extraction (M2E2), which aims to extract events and their arguments from multimedia documents. We develop the first benchmark and collect a dataset of 245 multimedia news articles with extensively annotated events and arguments. We propose a novel method, Weakly Aligned Structured Embedding (WASE), that encodes structured representations of semantic information from textual and visual data into a common embedding space. The structures are aligned across modalities by employing a weakly supervised training strategy, which enables exploiting available resources without explicit cross-media annotation. Compared to uni-modal state-of-the-art methods, our approach achieves 4.0% and 9.8% absolute F-score gains on text event argument role labeling and visual event extraction. Compared to state-of-the-art multimedia unstructured representations, we achieve 8.3% and 5.0% absolute F-score gains on multimedia event extraction and argument role labeling, respectively. By utilizing images, we extract 21.4% more event mentions than traditional text-only methods.