Do you want to publish a course? Click here

Online Enhanced Semantic Hashing: Towards Effective and Efficient Retrieval for Streaming Multi-Modal Data

88   0   0.0 ( 0 )
 Added by Xiao-Ming Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With the vigorous development of multimedia equipment and applications, efficient retrieval of large-scale multi-modal data has become a trendy research topic. Thereinto, hashing has become a prevalent choice due to its retrieval efficiency and low storage cost. Although multi-modal hashing has drawn lots of attention in recent years, there still remain some problems. The first point is that existing methods are mainly designed in batch mode and not able to efficiently handle streaming multi-modal data. The second point is that all existing online multi-modal hashing methods fail to effectively handle unseen new classes which come continuously with streaming data chunks. In this paper, we propose a new model, termed Online enhAnced SemantIc haShing (OASIS). We design novel semantic-enhanced representation for data, which could help handle the new coming classes, and thereby construct the enhanced semantic objective function. An efficient and effective discrete online optimization algorithm is further proposed for OASIS. Extensive experiments show that our method can exceed the state-of-the-art models. For good reproducibility and benefiting the community, our code and data are already available in supplementary material and will be made publicly available.



rate research

Read More

With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of these hashing methods are designed to handle simple binary similarity. The complex multilevel semantic structure of images associated with multiple labels have not yet been well explored. Here we propose a deep semantic ranking based method for learning hash functions that preserve multilevel semantic similarity between multi-label images. In our approach, deep convolutional neural network is incorporated into hash functions to jointly learn feature representations and mappings from them to hash codes, which avoids the limitation of semantic representation power of hand-crafted features. Meanwhile, a ranking list that encodes the multilevel similarity information is employed to guide the learning of such deep hash functions. An effective scheme based on surrogate loss is used to solve the intractable optimization problem of nonsmooth and multivariate ranking measures involved in the learning procedure. Experimental results show the superiority of our proposed approach over several state-of-the-art hashing methods in term of ranking evaluation metrics when tested on multi-label image datasets.
Due to the rapid development of mobile Internet techniques, cloud computation and popularity of online social networking and location-based services, massive amount of multimedia data with geographical information is generated and uploaded to the Internet. In this paper, we propose a novel type of cross-modal multimedia retrieval called geo-multimedia cross-modal retrieval which aims to search out a set of geo-multimedia objects based on geographical distance proximity and semantic similarity between different modalities. Previous studies for cross-modal retrieval and spatial keyword search cannot address this problem effectively because they do not consider multimedia data with geo-tags and do not focus on this type of query. In order to address this problem efficiently, we present the definition of $k$NN geo-multimedia cross-modal query at the first time and introduce relevant conceptions such as cross-modal semantic representation space. To bridge the semantic gap between different modalities, we propose a method named cross-modal semantic matching which contains two important component, i.e., CorrProj and LogsTran, which aims to construct a common semantic representation space for cross-modal semantic similarity measurement. Besides, we designed a framework based on deep learning techniques to implement common semantic representation space construction. In addition, a novel hybrid indexing structure named GMR-Tree combining geo-multimedia data and R-Tree is presented and a efficient $k$NN search algorithm called $k$GMCMS is designed. Comprehensive experimental evaluation on real and synthetic dataset clearly demonstrates that our solution outperforms the-state-of-the-art methods.
Supervised cross-modal hashing has gained increasing research interest on large-scale retrieval task owning to its satisfactory performance and efficiency. However, it still has some challenging issues to be further studied: 1) most of them fail to well preserve the semantic correlations in hash codes because of the large heterogenous gap; 2) most of them relax the discrete constraint on hash codes, leading to large quantization error and consequent low performance; 3) most of them suffer from relatively high memory cost and computational complexity during training procedure, which makes them unscalable. In this paper, to address above issues, we propose a supervised cross-modal hashing method based on matrix factorization dubbed Efficient Discrete Supervised Hashing (EDSH). Specifically, collective matrix factorization on heterogenous features and semantic embedding with class labels are seamlessly integrated to learn hash codes. Therefore, the feature based similarities and semantic correlations can be both preserved in hash codes, which makes the learned hash codes more discriminative. Then an efficient discrete optimal algorithm is proposed to handle the scalable issue. Instead of learning hash codes bit-by-bit, hash codes matrix can be obtained directly which is more efficient. Extensive experimental results on three public real-world datasets demonstrate that EDSH produces a superior performance in both accuracy and scalability over some existing cross-modal hashing methods.
139 - Lei Zhu , Hui Cui , Zhiyong Cheng 2020
Social network stores and disseminates a tremendous amount of user shared images. Deep hashing is an efficient indexing technique to support large-scale social image retrieval, due to its deep representation capability, fast retrieval speed and low storage cost. Particularly, unsupervised deep hashing has well scalability as it does not require any manually labelled data for training. However, owing to the lacking of label guidance, existing methods suffer from severe semantic shortage when optimizing a large amount of deep neural network parameters. Differently, in this paper, we propose a Dual-level Semantic Transfer Deep Hashing (DSTDH) method to alleviate this problem with a unified deep hash learning framework. Our model targets at learning the semantically enhanced deep hash codes by specially exploiting the user-generated tags associated with the social images. Specifically, we design a complementary dual-level semantic transfer mechanism to efficiently discover the potential semantics of tags and seamlessly transfer them into binary hash codes. On the one hand, instance-level semantics are directly preserved into hash codes from the associated tags with adverse noise removing. Besides, an image-concept hypergraph is constructed for indirectly transferring the latent high-order semantic correlations of images and tags into hash codes. Moreover, the hash codes are obtained simultaneously with the deep representation learning by the discrete hash optimization strategy. Extensive experiments on two public social image retrieval datasets validate the superior performance of our method compared with state-of-the-art hashing methods. The source codes of our method can be obtained at https://github.com/research2020-1/DSTDH
Semantic hashing represents documents as compact binary vectors (hash codes) and allows both efficient and effective similarity search in large-scale information retrieval. The state of the art has primarily focused on learning hash codes that improve similarity search effectiveness, while assuming a brute-force linear scan strategy for searching over all the hash codes, even though much faster alternatives exist. One such alternative is multi-index hashing, an approach that constructs a smaller candidate set to search over, which depending on the distribution of the hash codes can lead to sub-linear search time. In this work, we propose Multi-Index Semantic Hashing (MISH), an unsupervised hashing model that learns hash codes that are both effective and highly efficient by being optimized for multi-index hashing. We derive novel training objectives, which enable to learn hash codes that reduce the candidate sets produced by multi-index hashing, while being end-to-end trainable. In fact, our proposed training objectives are model agnostic, i.e., not tied to how the hash codes are generated specifically in MISH, and are straight-forward to include in existing and future semantic hashing models. We experimentally compare MISH to state-of-the-art semantic hashing baselines in the task of document similarity search. We find that even though multi-index hashing also improves the efficiency of the baselines compared to a linear scan, they are still upwards of 33% slower than MISH, while MISH is still able to obtain state-of-the-art effectiveness.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا