Do you want to publish a course? Click here

Cross-media Structured Common Space for Multimedia Event Extraction

83   0   0.0 ( 0 )
 Added by Alireza Zareian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce a new task, MultiMedia Event Extraction (M2E2), which aims to extract events and their arguments from multimedia documents. We develop the first benchmark and collect a dataset of 245 multimedia news articles with extensively annotated events and arguments. We propose a novel method, Weakly Aligned Structured Embedding (WASE), that encodes structured representations of semantic information from textual and visual data into a common embedding space. The structures are aligned across modalities by employing a weakly supervised training strategy, which enables exploiting available resources without explicit cross-media annotation. Compared to uni-modal state-of-the-art methods, our approach achieves 4.0% and 9.8% absolute F-score gains on text event argument role labeling and visual event extraction. Compared to state-of-the-art multimedia unstructured representations, we achieve 8.3% and 5.0% absolute F-score gains on multimedia event extraction and argument role labeling, respectively. By utilizing images, we extract 21.4% more event mentions than traditional text-only methods.



rate research

Read More

Due to the rapid development of mobile Internet techniques, cloud computation and popularity of online social networking and location-based services, massive amount of multimedia data with geographical information is generated and uploaded to the Internet. In this paper, we propose a novel type of cross-modal multimedia retrieval called geo-multimedia cross-modal retrieval which aims to search out a set of geo-multimedia objects based on geographical distance proximity and semantic similarity between different modalities. Previous studies for cross-modal retrieval and spatial keyword search cannot address this problem effectively because they do not consider multimedia data with geo-tags and do not focus on this type of query. In order to address this problem efficiently, we present the definition of $k$NN geo-multimedia cross-modal query at the first time and introduce relevant conceptions such as cross-modal semantic representation space. To bridge the semantic gap between different modalities, we propose a method named cross-modal semantic matching which contains two important component, i.e., CorrProj and LogsTran, which aims to construct a common semantic representation space for cross-modal semantic similarity measurement. Besides, we designed a framework based on deep learning techniques to implement common semantic representation space construction. In addition, a novel hybrid indexing structure named GMR-Tree combining geo-multimedia data and R-Tree is presented and a efficient $k$NN search algorithm called $k$GMCMS is designed. Comprehensive experimental evaluation on real and synthetic dataset clearly demonstrates that our solution outperforms the-state-of-the-art methods.
Multimodal Sentiment Analysis in Real-life Media (MuSe) 2020 is a Challenge-based Workshop focusing on the tasks of sentiment recognition, as well as emotion-target engagement and trustworthiness detection by means of more comprehensively integrating the audio-visual and language modalities. The purpose of MuSe 2020 is to bring together communities from different disciplines; mainly, the audio-visual emotion recognition community (signal-based), and the sentiment analysis community (symbol-based). We present three distinct sub-challenges: MuSe-Wild, which focuses on continuous emotion (arousal and valence) prediction; MuSe-Topic, in which participants recognise domain-specific topics as the target of 3-class (low, medium, high) emotions; and MuSe-Trust, in which the novel aspect of trustworthiness is to be predicted. In this paper, we provide detailed information on MuSe-CaR, the first of its kind in-the-wild database, which is utilised for the challenge, as well as the state-of-the-art features and modelling approaches applied. For each sub-challenge, a competitive baseline for participants is set; namely, on test we report for MuSe-Wild a combined (valence and arousal) CCC of .2568, for MuSe-Topic a score (computed as 0.34$cdot$ UAR + 0.66$cdot$F1) of 76.78 % on the 10-class topic and 40.64 % on the 3-class emotion prediction, and for MuSe-Trust a CCC of .4359.
In this paper, we propose a systematic solution to the problem of cross-layer optimization for delay-sensitive media transmission over time-varying wireless channels as well as investigate the structures and properties of this solution, such that it can be easily implemented in various multimedia systems and applications. Specifically, we formulate this problem as a finite-horizon Markov decision process (MDP) by explicitly considering the users heterogeneous multimedia traffic characteristics (e.g. delay deadlines, distortion impacts and dependencies etc.), time-varying network conditions as well as, importantly, their ability to adapt their cross-layer transmission strategies in response to these dynamics. Based on the heterogeneous characteristics of the media packets, we are able to express the transmission priorities between packets as a new type of directed acyclic graph (DAG). This DAG provides the necessary structure for determining the optimal cross-layer actions in each time slot: the root packet in the DAG will always be selected for transmission since it has the highest positive marginal utility; and the complexity of the proposed cross-layer solution is demonstrated to linearly increase w.r.t. the number of disconnected packet pairs in the DAG and exponentially increase w.r.t. the number of packets on which the current packets depend on. The simulation results demonstrate that the proposed solution significantly outperforms existing state-of-the-art cross-layer solutions. Moreover, we show that our solution provides the upper bound performance for the cross-layer optimization solutions with delayed feedback such as the well-known RaDiO framework.
69 - Xin Huang , Yuxin Peng 2018
Cross-media retrieval is a research hotspot in multimedia area, which aims to perform retrieval across different media types such as image and text. The performance of existing methods usually relies on labeled data for model training. However, cross-media data is very labor consuming to collect and label, so how to transfer valuable knowledge in existing data to new data is a key problem towards application. For achieving the goal, this paper proposes deep cross-media knowledge transfer (DCKT) approach, which transfers knowledge from a large-scale cross-media dataset to promote the model training on another small-scale cross-media dataset. The main contributions of DCKT are: (1) Two-level transfer architecture is proposed to jointly minimize the media-level and correlation-level domain discrepancies, which allows two important and complementary aspects of knowledge to be transferred: intra-media semantic and inter-media correlation knowledge. It can enrich the training information and boost the retrieval accuracy. (2) Progressive transfer mechanism is proposed to iteratively select training samples with ascending transfer difficulties, via the metric of cross-media domain consistency with adaptive feedback. It can drive the transfer process to gradually reduce vast cross-media domain discrepancy, so as to enhance the robustness of model training. For verifying the effectiveness of DCKT, we take the largescale dataset XMediaNet as source domain, and 3 widelyused datasets as target domain for cross-media retrieval. Experimental results show that DCKT achieves promising improvement on retrieval accuracy.
This paper proposes a novel energy-efficient multimedia delivery system called EStreamer. First, we study the relationship between buffer size at the client, burst-shaped TCP-based multimedia traffic, and energy consumption of wireless network interfaces in smartphones. Based on the study, we design and implement EStreamer for constant bit rate and rate-adaptive streaming. EStreamer can improve battery lifetime by 3x, 1.5x and 2x while streaming over Wi-Fi, 3G and 4G respectively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا