Do you want to publish a course? Click here

Lattice Boltzmann Simulations of Non-Equilibrium Fluctuations in a Non-Ideal Binary Mixture

60   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the recent years the lattice Boltzmann (LB) methodology has been fruitfully extended to include the effects of thermal fluctuations. So far, all studied cases pertain equilibrium fluctuations, i.e. fluctuations with respect to an equilibrium background state. In this paper we take a step further and present results of fluctuating LB simulations of a binary mixture confined between two parallel walls in presence of a constant concentration gradient in the wall-to-wall direction. This is a paradigmatic set-up for the study of non-equilibrium (NE) fluctuations, i.e. fluctuations with respect to a non- equilibrium state. We analyze the dependence of the structure factors for the hydrodynamical fields on the wave vector $boldsymbol{q}$ in both the directions parallel and perpendicular to the walls, as well as the finite-size effects induced by confinement, highlighting the long-range ($sim |boldsymbol{q}|^{-4}$) nature of correlations in the NE framework. Results quantitatively agree with the predictions of fluctuating hydrodynamics. Moreover, in presence of a non-ideal (NI) equation of state of the mixture, we also observe that the (spatially homogeneous) average pressure changes, due to a genuinely new contribution triggered by the long-range nature of NE fluctuations. These NE pressure effects are studied at changing the system size and the concentration gradient. Taken all together, we argue that these findings are instrumental to boost the applicability of the fluctuating LB methodology in the framework of NE fluctuations, possibly in conjunction with experiments.



rate research

Read More

We show that, when a single relaxation time lattice Boltzmann algorithm is used to solve the hydrodynamic equations of a binary fluid for which the two components have different viscosities, strong spurious velocities in the steady state lead to incorrect results for the equilibrium contact angle. We identify the origins of these spurious currents, and demonstrate how the results can be greatly improved by using a lattice Boltzmann method based on a multiple-relaxation-time algorithm. By considering capillary filling we describe the dependence of the advancing contact angle on the interface velocity.
Non-Newtonian fluid flows, especially in three dimensions (3D), arise in numerous settings of interest to physics. Prior studies using the lattice Boltzmann method (LBM) of such flows have so far been limited to mainly to two dimensions and used less robust collision models. In this paper, we develop a new 3D cascaded LBM based on central moments and multiple relaxation times on a three-dimensional, nineteen velocity (D3Q19) lattice for simulation of generalized Newtonian (power law) fluid flows. The relaxation times of the second order moments are varied locally based on the local shear rate and parameterized by the consistency coefficient and the power law index of the nonlinear constitutive relation of the power law fluid. Numerical validation study of the 3D cascaded LBM for various benchmark problems, including the complex 3D non-Newtonian flow in a cubic cavity at different Reynolds numbers and power law index magnitudes encompassing shear thinning and shear thickening fluids, are presented. Furthermore, numerical stability comparisons of the proposed advanced LBM scheme against the LBM based on other collision models, such as the SRT model and MRT model based on raw moments, are made. Numerical results demonstrate the accuracy, second order grid convergence and significant improvements in stability of the 3D cascaded LBM for simulation of 3D non-Newtonian flows of power law fluids.
The effects of mid-range repulsion in Lattice Boltzmann models on the coalescence/breakup behaviour of single-component, non-ideal fluids are investigated. It is found that mid-range repulsive interactions allow the formation of spray-like, multi-droplet configurations, with droplet size directly related to the strength of the repulsive interaction. The simulations show that just a tiny ten-percent of mid-range repulsive pseudo-energy can boost the surface/volume ratio of the phase- separated fluid by nearly two orders of magnitude. Drawing upon a formal analogy with magnetic Ising systems, a pseudo-potential energy is defined, which is found to behave like a quasi-conserved quantity for most of the time-evolution. This offers a useful quantitative indicator of the stability of the various configurations, thus helping the task of their interpretation and classification. The present approach appears to be a promising tool for the computational modelling of complex flow phenomena, such as atomization, spray formation and micro-emulsions, break-up phenomena and possibly glassy-like systems as well.
Biological activity gives rise to non-equilibrium fluctuations in the cytoplasm of cells; however, there are few methods to directly measure these fluctuations. Using a reconstituted actin cytoskeleton, we show that the bending dynamics of embedded microtubules can be used to probe local stress fluctuations. We add myosin motors that drive the network out of equilibrium, resulting in an increased amplitude and modified time-dependence of microtubule bending fluctuations. We show that this behavior results from step-like forces on the order of 10 pN driven by collective motor dynamics.
96 - Q. Li , Y. Yu , 2019
The pseudopotential multiphase lattice Boltzmann (LB) model is a very popular model in the LB community for simulating multiphase flows. When the multiphase modeling involves a solid boundary, a numerical scheme is required to simulate the contact angle at the solid boundary. In this work, we aim at investigating the implementation of contact angles in the pseudopotential LB simulations with curved boundaries. In the pseudopotential LB model, the contact angle is usually realized by employing a solid-fluid interaction or specifying a constant virtual wall density. However, it is shown that the solid-fluid interaction scheme yields very large spurious currents in the simulations involving curved boundaries, while the virtual-density scheme produces an unphysical thick mass-transfer layer near the solid boundary although it gives much smaller spurious currents. We also extend the geometric-formulation scheme in the phase-field method to the pseudopotential LB model. Nevertheless, in comparison with the solid-fluid interaction scheme and the virtual-density scheme, the geometric-formulation scheme is relatively difficult to implement for curved boundaries and cannot be directly applied to three-dimensional space. By analyzing the features of these three schemes, we propose an improved virtual-density scheme to implement contact angles in the pseudopotential LB simulations with curved boundaries, which does not suffer from a thick mass-transfer layer near the solid boundary and retains the advantages of the original virtual-density scheme, i.e., simplicity, easiness for implementation, and low spurious currents.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا