No Arabic abstract
In online advertising, the Internet users may be exposed to a sequence of different ad campaigns, i.e., display ads, search, or referrals from multiple channels, before led up to any final sales conversion and transaction. For both campaigners and publishers, it is fundamentally critical to estimate the contribution from ad campaign touch-points during the customer journey (conversion funnel) and assign the right credit to the right ad exposure accordingly. However, the existing research on the multi-touch attribution problem lacks a principled way of utilizing the users pre-conversion actions (i.e., clicks), and quite often fails to model the sequential patterns among the touch points from a users behavior data. To make it worse, the current industry practice is merely employing a set of arbitrary rules as the attribution model, e.g., the popular last-touch model assigns 100% credit to the final touch-point regardless of actual attributions. In this paper, we propose a Dual-attention Recurrent Neural Network (DARNN) for the multi-touch attribution problem. It learns the attribution values through an attention mechanism directly from the conversion estimation objective. To achieve this, we utilize sequence-to-sequence prediction for user clicks, and combine both post-view and post-click attribution patterns together for the final conversion estimation. To quantitatively benchmark attribution models, we also propose a novel yet practical attribution evaluation scheme through the proxy of budget allocation (under the estimated attributions) over ad channels. The experimental results on two real datasets demonstrate the significant performance gains of our attribution model against the state of the art.
In online advertising, users may be exposed to a range of different advertising campaigns, such as natural search or referral or organic search, before leading to a final transaction. Estimating the contribution of advertising campaigns on the users journey is very meaningful and crucial. A marketer could observe each customers interaction with different marketing channels and modify their investment strategies accordingly. Existing methods including both traditional last-clicking methods and recent data-driven approaches for the multi-touch attribution (MTA) problem lack enough interpretation on why the methods work. In this paper, we propose a novel model called DeepMTA, which combines deep learning model and additive feature explanation model for interpretable online multi-touch attribution. DeepMTA mainly contains two parts, the phased-LSTMs based conversion prediction model to catch different time intervals, and the additive feature attribution model combined with shaley values. Additive feature attribution is explanatory that contains a linear function of binary variables. As the first interpretable deep learning model for MTA, DeepMTA considers three important features in the customer journey: event sequence order, event frequency and time-decay effect of the event. Evaluation on a real dataset shows the proposed conversion prediction model achieves 91% accuracy.
Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in large-scale industrial applications. However, these methods can suffer from lack of exploration. Another line of prior work addresses the exploration-exploitation trade-off problem with contextual bandit methods, which are recently less studied in the industry due to the difficulty in extending their flexibility with deep models. In this paper, we propose a novel Deep Uncertainty-Aware Learning (DUAL) method to learn CTR models based on Gaussian processes, which can provide predictive uncertainty estimations while maintaining the flexibility of deep neural networks. DUAL can be easily implemented on existing models and deployed in real-time systems with minimal extra computational overhead. By linking the predictive uncertainty estimation ability of DUAL to well-known bandit algorithms, we further present DUAL-based Ad-ranking strategies to boost up long-term utilities such as the social welfare in advertising systems. Experimental results on several public datasets demonstrate the effectiveness of our methods. Remarkably, an online A/B test deployed in the Alibaba display advertising platform shows an 8.2% social welfare improvement and an 8.0% revenue lift.
Multiple content providers rely on native advertisement for revenue by placing ads within the organic content of their pages. We refer to this setting as ``queryless to differentiate from search advertisement where a user submits a search query and gets back related ads. Understanding user intent is critical because relevant ads improve user experience and increase the likelihood of delivering clicks that have value to our advertisers. This paper presents Multi-Channel Sequential Behavior Network (MC-SBN), a deep learning approach for embedding users and ads in a semantic space in which relevance can be evaluated. Our proposed user encoder architecture summarizes user activities from multiple input channels--such as previous search queries, visited pages, or clicked ads--into a user vector. It uses multiple RNNs to encode sequences of event sessions from the different channels and then applies an attention mechanism to create the user representation. A key property of our approach is that user vectors can be maintained and updated incrementally, which makes it feasible to be deployed for large-scale serving. We conduct extensive experiments on real-world datasets. The results demonstrate that MC-SBN can improve the ranking of relevant ads and boost the performance of both click prediction and conversion prediction in the queryless native advertising setting.
Search, recommendation, and online advertising are the three most important information-providing mechanisms on the web. These information seeking techniques, satisfying users information needs by suggesting users personalized objects (information or services) at the appropriate time and place, play a crucial role in mitigating the information overload problem. With recent great advances in deep reinforcement learning (DRL), there have been increasing interests in developing DRL based information seeking techniques. These DRL based techniques have two key advantages -- (1) they are able to continuously update information seeking strategies according to users real-time feedback, and (2) they can maximize the expected cumulative long-term reward from users where reward has different definitions according to information seeking applications such as click-through rate, revenue, user satisfaction and engagement. In this paper, we give an overview of deep reinforcement learning for search, recommendation, and online advertising from methodologies to applications, review representative algorithms, and discuss some appealing research directions.
With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in utilizing RL for online advertising in recommendation platforms (e.g., e-commerce and news feed sites). However, most RL-based advertising algorithms focus on optimizing ads revenue while ignoring the possible negative influence of ads on user experience of recommended items (products, articles and videos). Developing an optimal advertising algorithm in recommendations faces immense challenges because interpolating ads improperly or too frequently may decrease user experience, while interpolating fewer ads will reduce the advertising revenue. Thus, in this paper, we propose a novel advertising strategy for the rec/ads trade-off. To be specific, we develop an RL-based framework that can continuously update its advertising strategies and maximize reward in the long run. Given a recommendation list, we design a novel Deep Q-network architecture that can determine three internally related tasks jointly, i.e., (i) whether to interpolate an ad or not in the recommendation list, and if yes, (ii) the optimal ad and (iii) the optimal location to interpolate. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework.