Do you want to publish a course? Click here

Multi-Channel Sequential Behavior Networks for User Modeling in Online Advertising

270   0   0.0 ( 0 )
 Added by Iyad Batal
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multiple content providers rely on native advertisement for revenue by placing ads within the organic content of their pages. We refer to this setting as ``queryless to differentiate from search advertisement where a user submits a search query and gets back related ads. Understanding user intent is critical because relevant ads improve user experience and increase the likelihood of delivering clicks that have value to our advertisers. This paper presents Multi-Channel Sequential Behavior Network (MC-SBN), a deep learning approach for embedding users and ads in a semantic space in which relevance can be evaluated. Our proposed user encoder architecture summarizes user activities from multiple input channels--such as previous search queries, visited pages, or clicked ads--into a user vector. It uses multiple RNNs to encode sequences of event sessions from the different channels and then applies an attention mechanism to create the user representation. A key property of our approach is that user vectors can be maintained and updated incrementally, which makes it feasible to be deployed for large-scale serving. We conduct extensive experiments on real-world datasets. The results demonstrate that MC-SBN can improve the ranking of relevant ads and boost the performance of both click prediction and conversion prediction in the queryless native advertising setting.

rate research

Read More

Precise user modeling is critical for online personalized recommendation services. Generally, users interests are diverse and are not limited to a single aspect, which is particularly evident when their behaviors are observed for a longer time. For example, a user may demonstrate interests in cats/dogs, dancing and food & delights when browsing short videos on Tik Tok; the same user may show interests in real estate and womens wear in her web browsing behaviors. Traditional models tend to encode a users behaviors into a single embedding vector, which do not have enough capacity to effectively capture her diverse interests. This paper proposes a Sequential User Matrix (SUM) to accurately and efficiently capture users diverse interests. SUM models user behavior with a multi-channel network, with each channel representing a different aspect of the users interests. User states in different channels are updated by an emph{erase-and-add} paradigm with interest- and instance-level attention. We further propose a local proximity debuff component and a highway connection component to make the model more robust and accurate. SUM can be maintained and updated incrementally, making it feasible to be deployed for large-scale online serving. We conduct extensive experiments on two datasets. Results demonstrate that SUM consistently outperforms state-of-the-art baselines.
To drive purchase in online advertising, it is of the advertisers great interest to optimize the sequential advertising strategy whose performance and interpretability are both important. The lack of interpretability in existing deep reinforcement learning methods makes it not easy to understand, diagnose and further optimize the strategy. In this paper, we propose our Deep Intents Sequential Advertising (DISA) method to address these issues. The key part of interpretability is to understand a consumers purchase intent which is, however, unobservable (called hidden states). In this paper, we model this intention as a latent variable and formulate the problem as a Partially Observable Markov Decision Process (POMDP) where the underlying intents are inferred based on the observable behaviors. Large-scale industrial offline and online experiments demonstrate our methods superior performance over several baselines. The inferred hidden states are analyzed, and the results prove the rationality of our inference.
151 - Liyi Guo , Junqi Jin , Haoqi Zhang 2021
Advertising expenditures have become the major source of revenue for e-commerce platforms. Providing good advertising experiences for advertisers by reducing their costs of trial and error in discovering the optimal advertising strategies is crucial for the long-term prosperity of online advertising. To achieve this goal, the advertising platform needs to identify the advertisers optimization objectives, and then recommend the corresponding strategies to fulfill the objectives. In this work, we first deploy a prototype of strategy recommender system on Taobao display advertising platform, which indeed increases the advertisers performance and the platforms revenue, indicating the effectiveness of strategy recommendation for online advertising. We further augment this prototype system by explicitly learning the advertisers preferences over various advertising performance indicators and then optimization objectives through their adoptions of different recommending advertising strategies. We use contextual bandit algorithms to efficiently learn the advertisers preferences and maximize the recommendation adoption, simultaneously. Simulation experiments based on Taobao online bidding data show that the designed algorithms can effectively optimize the strategy adoption rate of advertisers.
In this paper, the method UCB-RS, which resorts to recommendation system (RS) for enhancing the upper-confidence bound algorithm UCB, is presented. The proposed method is used for dealing with non-stationary and large-state spaces multi-armed bandit problems. The proposed method has been targeted to the problem of the product recommendation in the online advertising. Through extensive testing with RecoGym, an OpenAI Gym-based reinforcement learning environment for the product recommendation in online advertising, the proposed method outperforms the widespread reinforcement learning schemes such as $epsilon$-Greedy, Upper Confidence (UCB1) and Exponential Weights for Exploration and Exploitation (EXP3).
With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in utilizing RL for online advertising in recommendation platforms (e.g., e-commerce and news feed sites). However, most RL-based advertising algorithms focus on optimizing ads revenue while ignoring the possible negative influence of ads on user experience of recommended items (products, articles and videos). Developing an optimal advertising algorithm in recommendations faces immense challenges because interpolating ads improperly or too frequently may decrease user experience, while interpolating fewer ads will reduce the advertising revenue. Thus, in this paper, we propose a novel advertising strategy for the rec/ads trade-off. To be specific, we develop an RL-based framework that can continuously update its advertising strategies and maximize reward in the long run. Given a recommendation list, we design a novel Deep Q-network architecture that can determine three internally related tasks jointly, i.e., (i) whether to interpolate an ad or not in the recommendation list, and if yes, (ii) the optimal ad and (iii) the optimal location to interpolate. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا