No Arabic abstract
In this paper, we consider a class of plane curves called log-aesthetic curves and their generalization which are used in computer aided geometric design. We consider these curves in the framework of the similarity geometry and characterize them as invariant curves under the integrable flow on plane curves which is governed by the Burgers equation. We propose a variational principle for these curves, leading to the stationary Burgers equation as the Euler-Lagrange equation. As an application of the formulation developed here, we propose a discretization of these curves and the associated variational principle which preserves the underlying integrable structure. We finally present algorithms for the generation of discrete log-aesthetic curves for given ${rm G}^1$ data based on the similarity geometry. Our method is able to generate $S$-shaped discrete curves with an inflection as well as $C$-shaped curves according to the boundary condition. The resulting discrete curves are regarded as self-adaptive discretization and thus high-quality even with a small number of points.
In this paper we consider the log-aesthetic curves and their generalization which are used in CAGD. We consider those curves under similarity geometry and characterize them as stationary integrable flow on plane curves which is governed by the Burgers equation. We propose a variational formulation of those curves whose Euler-Lagrange equation yields the stationary Burgers equation. Our result suggests that the log-aesthetic curves and their generalization can be regarded as the similarity geometric analogue of Eulers elasticae.
A linkage mechanism consists of rigid bodies assembled by joints which can be used to translate and transfer motion from one form in one place to another. In this paper, we are particularly interested in a family of spacial linkage mechanisms which consist of $n$-copies of a rigid body joined together by hinges to form a ring. Each hinge joint has its own axis of revolution and rigid bodies joined to it can be freely rotated around the axis. The family includes the famous threefold symmetric Bricard6R linkage also known as the Kaleidocycle, which exhibits a characteristic turning over motion. We can model such a linkage as a discrete closed curve in $mathbb{R}^3$ with a constant torsion up to sign. Then, its motion is described as the deformation of the curve preserving torsion and arc length. We describe certain motions of this object that are governed by the semi-discrete mKdV equations, where infinitesimally the motion of each vertex is confined in the osculating plane.
Based on the well-established theory of discrete conjugate nets in discrete differential geometry, we propose and examine discrete analogues of important objects and notions in the theory of semi-Hamiltonian systems of hydrodynamic type. In particular, we present discrete counterparts of (generalised) hodograph equations, hyperelliptic integrals and associated cycles, characteristic speeds of Whitham type and (implicitly) the corresponding Whitham equations. By construction, the intimate relationship with integrable system theory is maintained in the discrete setting.
Paraconformal or $GL(2)$ geometry on an $n$-dimensional manifold $M$ is defined by a field of rational normal curves of degree $n-1$ in the projectivised cotangent bundle $mathbb{P} T^*M$. Such geometry is known to arise on solution spaces of ODEs with vanishing Wunschmann (Doubrov-Wilczynski) invariants. In this paper we discuss yet another natural source of $GL(2)$ structures, namely dispersionless integrable hierarchies of PDEs (for instance the dKP hierarchy). In the latter context, $GL(2)$ structures coincide with the characteristic variety (principal symbol) of the hierarchy. Dispersionless hierarchies provide explicit examples of various particularly interesting classes of $GL(2)$ structures studied in the literature. Thus, we obtain torsion-free $GL(2)$ structures of Bryant that appeared in the context of exotic holonomy in dimension four, as well as totally geodesic $GL(2)$ structures of Krynski. The latter, also known as involutive $GL(2)$ structures, possess a compatible affine connection (with torsion) and a two-parameter family of totally geodesic $alpha$-manifolds (coming from the dispersionless Lax equations), which makes them a natural generalisation of the Einstein-Weyl geometry. Our main result states that involutive $GL(2)$ structures are governed by a dispersionless integrable system. This establishes integrability of the system of Wunschmann conditions.
An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of $N$-soliton solutions of the continuous and semi-discrete Camassa-Holm equations are presented. Based on determinant formulas, we can generate multi-soliton, multi-cuspon and multi-soliton-cuspon solutions. Numerical computations using the integrable semi-discrete Camassa-Holm equation are performed. It is shown that the integrable semi-discrete Camassa-Holm equation gives very accurate numerical results even in the cases of cuspon-cuspon and soliton-cuspon interactions. The numerical computation for an initial value condition, which is not an exact solution, is also presented.