Do you want to publish a course? Click here

An integrable semi-discretization of the Camassa-Holm equation and its determinant solution

189   0   0.0 ( 0 )
 Added by Kenichi Maruno
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of $N$-soliton solutions of the continuous and semi-discrete Camassa-Holm equations are presented. Based on determinant formulas, we can generate multi-soliton, multi-cuspon and multi-soliton-cuspon solutions. Numerical computations using the integrable semi-discrete Camassa-Holm equation are performed. It is shown that the integrable semi-discrete Camassa-Holm equation gives very accurate numerical results even in the cases of cuspon-cuspon and soliton-cuspon interactions. The numerical computation for an initial value condition, which is not an exact solution, is also presented.



rate research

Read More

In the present paper, we investigate some geometrical properties of the Camass-Holm equation (CHE). We establish the geometrical equivalence between the CHE and the M-CIV equation using a link with the motion of curves. We also show that these two equations are gauge equivalent each to other.
The soliton solutions of the Camassa-Holm equation are derived by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by other methods.
In the present paper, we propose a two-component generalization of the reduced Ostrovsky equation, whose differential form can be viewed as the short-wave limit of a two-component Degasperis-Procesi (DP) equation. They are integrable due to the existence of Lax pairs. Moreover, we have shown that two-component reduced Ostrovsky equation can be reduced from an extended BKP hierarchy with negative flow through a pseudo 3-reduction and a hodograph (reciprocal) transform. As a by-product, its bilinear form and $N$-soliton solution in terms of pfaffians are presented. One- and two-soliton solutions are provided and analyzed. In the second part of the paper, we start with a modified BKP hierarchy, which is a Backlund transformation of the above extended BKP hierarchy, an integrable semi-discrete analogue of two-component reduced Ostrovsky equation is constructed by defining an appropriate discrete hodograph transform and dependent variable transformations. Especially, the backward difference form of above semi-discrete two-component reduced Ostrovsky equation gives rise to the integrable semi-discretization of the short wave limit of a two-component DP equation. Their $N$-soliton solutions in terms of pffafians are also provided.
Series of deformed Camassa-Holm-type equations are constructed using the Lagrangian deformation and Loop algebra splittings. They are weakly integrable in the sense of modified Lax pairs.
190 - Takayuki Tsuchida 2015
The action of a Backlund-Darboux transformation on a spectral problem associated with a known integrable system can define a new discrete spectral problem. In this paper, we interpret a slightly generalized version of the binary Backlund-Darboux (or Zakharov-Shabat dressing) transformation for the nonlinear Schrodinger (NLS) hierarchy as a discrete spectral problem, wherein the two intermediate potentials appearing in the Darboux matrix are considered as a pair of new dependent variables. Then, we associate the discrete spectral problem with a suitable isospectral time-evolution equation, which forms the Lax-pair representation for a space-discrete NLS system. This formulation is valid for the most general case where the two dependent variables take values in (rectangular) matrices. In contrast to the matrix generalization of the Ablowitz-Ladik lattice, our discretization has a rational nonlinearity and admits a Hermitian conjugation reduction between the two dependent variables. Thus, a new proper space-discretization of the vector/matrix NLS equation is obtained; by changing the time part of the Lax pair, we also obtain an integrable space-discretization of the vector/matrix modified KdV (mKdV) equation. Because Backlund-Darboux transformations are permutable, we can increase the number of discrete independent variables in a multi-dimensionally consistent way. By solving the consistency condition on the two-dimensional lattice, we obtain a new Yang-Baxter map of the NLS type, which can be considered as a fully discrete analog of the principal chiral model for projection matrices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا